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ARTICLE INFO ABSTRACT
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Dynamic resting state functional connectivity (RSFC) characterizes time-varying fluctuations of functional brain
network activity. While many studies have investigated static functional connectivity, it has been unclear
whether features of dynamic functional connectivity are associated with neurodegenerative diseases. Popular
sliding-window and clustering methods for extracting dynamic RSFC have various limitations that prevent
extracting reliable features to address this question. Here, we use a novel and robust time-varying dynamic
network (TVDN) approach to extract the dynamic RSFC features from high resolution magnetoencephalography
(MEG) data of participants with Alzheimer’s disease (AD) and matched controls. The TVDN algorithm
automatically and adaptively learns the low-dimensional spatiotemporal manifold of dynamic RSFC and detects
dynamic state transitions in data. We show that amongst all the functional features we investigated, the
dynamic manifold features are the most predictive of AD. These include: the temporal complexity of the
brain network, given by the number of state transitions and their dwell times, and the spatial complexity
of the brain network, given by the number of eigenmodes. These dynamic features have higher sensitivity
and specificity in distinguishing AD from healthy subjects than the existing benchmarks do. Intriguingly, we
found that AD patients generally have higher spatial complexity but lower temporal complexity compared with
healthy controls. We also show that graph theoretic metrics of dynamic component of TVDN are significantly
different in AD versus controls, while static graph metrics are not statistically different. These results indicate
that dynamic RSFC features are impacted in neurodegenerative disease like Alzheimer’s disease, and may be
crucial to understanding the pathophysiological trajectory of these diseases.
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1. Introduction and its alteration in disease is still lacking. Image data resolution is one

obstacle for obtaining convincing evidence that dynamic FC generates

The human brain can be described as a set of highly dynamic func-
tional networks constructed from a fixed structural network whose fluc-
tuations form the basis for complex cognitive functions and conscious-
ness (Deco and Jirsa, 2012; Shine et al., 2015). Failure of integration

strong predictors that distinct between AD and control samples. To
date, most dynamic FC studies in AD have focused on low temporal

resolution resting state functional magnetic resonance imaging (fMRI)

within these functional networks may lead to cognitive dysfunction—
the cardinal clinical manifestation of Alzheimer’s disease (AD) (Bokde
et al., 2009; Knopman et al., 2021; Scheltens et al., 2016). Here, we test
the hypothesis that time sensitive descriptions of brain network activ-
ity, namely dynamic functional connectivity (FC), are crucial features of
functionally relevant alterations in network structure that may underlie
AD pathophysiology (Sperling et al., 2010). Although there is a vast
literature on static FC and its graph theoretic properties in AD brains,
a comparable body of work interrogating the dynamic aspects of FC
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(Schumacher et al., 2019; Sendi et al., 2021; Chumin et al., 2021; Ma
et al., 2020; Dautricourt et al., 2022), restricting them only to detect
state transitions that may occur in the timescale of seconds. However,
micro-states with faster dynamics in the timescale of tens to hundreds
of milliseconds are considered the basis for the rapid reorganization
and adaptation of the functional networks of the brain Van de Ville
et al. (2010).
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Several technical challenges also prevent current studies from
demonstrating the utility of dynamic FC features in AD studies. Sliding-
window techniques have been commonly applied to extract the dy-
namic FCs. While the sliding-window method is practically attractive
due to its analytical simplicity and easy implementation, it presents
several limitations and trade-offs. The temporal resolution of the in-
ferred dynamic FC is inherently limited by the window length and
overlap. In practice, this trade-off means that only slow changes in
brain dynamics in the time-scale of the window length can be detected
or tracked. Furthermore, in almost all current implementations, the
sliding-window width is typically pre-specified and is not adaptable
to the signal statistics or noise (Jiang et al., 2022), and hence the
reliability and reproducibility of dynamic FC patterns are still a chal-
lenge (Filippi et al., 2019). Therefore, more comprehensive statistical
models are required to extract the dynamic FCs (Filippi et al., 2019).
Last but not least, the sliding window approaches typically use K-
means clustering on time-resolved FCs to determine the discrete states
encompassed by the dynamic FCs. Unfortunately, the performance of
K-means clustering suffers from the curse of dimensionality and can be
distorted when clustering high-dimensional FCs (Sun et al., 2012).

In the current study, we address these challenges by adopting recent
advances in model-based analysis of time-varying FC, and apply them
to interrogate the role of dynamic FC in the AD context. We utilize
the time-varying dynamic network approach (TVDN) proposed by Jiang
et al. (2022) to extract these dynamic FCs from magnetoencephalogra-
phy (MEG) resting state data in a well characterized cohort of patients
with AD and an age-matched control cohort study. MEG has been
shown to have good sensitivity to detect early functional changes
associated with AD pathophysiology (Lopez-Sanz et al., 2018; Khan and
Usman, 2015; Mandal et al., 2018; Maestt et al., 2015). From this high
resolution MEG data, TVDN allows us to examine the contributions
from temporal and spatial features separately. This is because the TVDN
algorithm was designed to ensure that spatial and temporal features
from TVDN are not confounded with each other, where the spatial
structures arise from the underlying static connectivity, and the tempo-
ral parameters describe the dynamic switching between brain networks
over time. This is achieved in the TVDN approach by imposing an
explicit model of piece-wise constant multivariate signal generation
model (see (1) and (2) in Jiang et al., 2022).

Moreover, TVDN utilizes a data driven dimension reduction and an
automated switch detection procedures to capture the dynamic patterns
of the FCs. Since this approach requires no clustering of dynamic
FCs, it eases the curse of dimensionality and avoids the uncertainties
induced by the clustering procedures as those adopted under the slid-
ing window framework. Finally, TVDN selects the model parameters
automatically to minimize the uncertainties of the number of switches
across independent samples, which generates robust and reproducible
dynamic FCs across different datasets. Using TVDN, we predict that the
AD patients will show fewer brain state transitions than the healthy
controls similar to what has been observed in EEG studies (Benz et al.,
2014). Furthermore, when evaluating the graph metrics resulting from
TVDN in AD patients, we expect a decrease in the path length and
modularity as suggested by Stam et al. (2009) and Wang et al. (2013).

In Section 4.4 we summarize the TVDN model, its assumptions, and
briefly describe how they lead to the desirable properties stated above.
In Section 2.1 and Section 2.2, we examine the differences between AD
and healthy control groups of the features and graph metrics inferred
from the TVDN model. We study the contribution of TVDN features on
classifying AD and control subjects in Section 2.3. Finally, we evaluate
the sensitivity and specificity of using the TVDN features to predict
AD and control classification and compare with benchmark methods
in Section 2.4. Using these analyses we show that certain dynamic
FC features, including the number of brain state switches, the number
of resting state networks, the relative importance of the resting state
networks, and a spatial distribution of the resting state networks, are
critical for correctly distinguishing AD patients from healthy controls.
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Our results particularly highlight the importance of dynamic graph
metrics over their static counterparts—cementing dynamicity of FC as
a key correlate of the disease. We discuss the results and illustrate
possible use cases in Section 3. All the technical details are presented
in Section 4.

2. Results

We implement TVDN on the MEG datasets from 88 AD patients
and 88 age-matched healthy control group. All AD patients met the
diagnostic criteria for probable AD or mild cognitive impairment due
to AD (Albert et al., 2011; McKhann et al., 2011; Jack et al., 2018).
The mean (standard deviation) of the mini-mental state examination
score (MMSE) in the AD cohort is 22.14(5.58), and that of the clinical
dementia rating (CDR) score is 0.87 (0.49). A schematic of the TVDN
is shown in Fig. 1, including the set of static and dynamic features
extracted from TVDN that will be used in the rest of the paper for
the purpose distinguishing AD from healthy control. For each MEG
dataset, TVDN automatically detects the brain state switches over given
time series, which divides the time series into multiple stationary time
segments. We obtain the eigenmodes from TVDN, defined as the mag-
nitude of the top r eigenvectors of the implied functional connectivity
matrix extending across all the time segments. TVDN assumes the set
of eigenmodes remains constant across all time segments, and only
their relative contributions change over time. Here r, the number of
eigenmodes, can vary from one subject to another, and is selected so
that corresponding magnitude of the eigenvalues comprises 80% of the
total sum of the magnitude of all the eigenvalues. Each eigenmode is
a 68 dimensional vector corresponding to 68 cortical regions based
on the Desikan—Killiany parcellations (Desikan et al., 2006), and may
be thought of as a single resting state network (RSN) that is shared
across the time segments. Therefore our RSNs, defined via the TVDN
model equation, may or may not correspond to the canonical RSNs one
observes via independent component analysis (Yeo et al., 2011). The
resulting TVDN scalar features are the number of eigenmodes and the
number of brain state switches. TVDN also provides a spatial feature, the
absolute weighted sum of the eigenmodes (WRSN), in each stationary
segment, which carries the information of both the shared eigenmodes
and the segment specific eigenvalues. The WRSN from each time seg-
ment represents the state of the brain during specific time intervals,
while the time between two switch points characterizes the dwell time
of the brain in each brain state, that is the amount of time the brain
spent in a state before moving into a new state. We finally average the
WRSN across the segments to obtain the average weighted resting state
network (AWRSN).

2.1. TVDN scalar features in AD and control groups

We use the above described TVDN method to extract static, dynamic
and spatial features from resting state MEG recordings in 88 patients
with AD and 88 age-matched-controls participants.

The results in Fig. 2 show that the number of eigenmodes are
significantly higher in AD group than that in the control group (95% CI:
6.276-7.928 vs 4.582-5.895, AD and control, respectively; t = 3.442, p-
value < 0.001) from a student t-test. This is consistent with increased
spatial heterogeneity and complexity of dynamic spatial patterns in
AD. Despite having an increased number of eigenmodes that commonly
used to represent brain states, patients with AD switch less frequently
between brain states compared to the healthy controls do on average
(95% CI: 1.664-2.745 vs 2.740-3.919, AD and control, respectively; t =
—2.743, p-value = 0.007). This is consistent with the observation that the
maximal dwell time in a stationary time segment is significantly longer
in AD patients than controls with (95% CI: 39.525-46.310 vs 30.960—
38.402, AD and control, respectively; ¢ = 3.188, p-value = 0.002). These
results suggest that AD patients have greater complexity of brain states
as represented by higher number of eigenmodes, although they are
significantly less active in brain state switches.
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Fig. 1. Schematic illustration of TVDN. TVDN extracts spatial features: the number of eigenmodes; temporal features: number of brain state switches; spatial and temporal mixed
features: weighted resting state networks (WRSN). The weighted resting state network in each segment is a weighted summation of the eigenmodes with the corresponding
eigenvalues as the weights. These are the features used in predictive models described in the rest of the paper.

TVDN: time-varying dynamic network model.
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Fig. 2. The comparisons between AD and control groups of the static features. Left: number of eigenmodes; Middle: number of brain state switches; Right: maximal dwell times.
Mean and 95% confidence intervals are shown and the p-values are from the student t-tests.

AD: Alzheimer’s disease.
2.2. Graph metrics of dynamic functional connectivity

We quantify the graph structure of the dynamic FCs using the
following graph metrics computed from the brain networks represented
by the TVDN connectivity matrices: path length L, representing the
average shortest length of the path that goes from one region to the
other; and modularity Q, where a brain network with a higher modu-
larity has denser connections within its subdivisions on average (Stam
et al., 2009; Wang et al., 2013; Baniqued et al., 2018). L and Q are two
important graph metrics which measure the integration and segregation
of a brain network (Cohen and D’Esposito, 2016), respectively. Specifi-
cally, we compute these graph metrics for all dynamic segments of the
data. For each subject, we first obtain the path length and modularity
over time denoted by L, .., and O,...., respectively. Furthermore, we
extract the graph metrics in the segments with the maximal dwell time
denoted by L, and Q... Moreover, we obtain the variance of the
graph metrics over time denoted by Lygar and Qygr. For a comparison,
we summarize the graph metrics of the static FC from the network
diffusion model (ND) proposed in Abdelnour et al. (2014), denoted by
Lgaiic and Og,iic» Where the ND model is a reduced form of the TVDN
model when assuming the FC is static. We then compare the properties
of these metrics in AD and control cohorts.

Distributions of the variances of the graph metrics over time are
shown in Fig. 3(a), which indicates that the path length and modularity
from the control cohort have significantly higher variability than those
from the AD cohort do after adjusting for the multiple comparison
(Lyar 95% CIL: 0.002-0.007 vs 0.008-0.018; ¢ = —3.069, p-value =
0.003; OQygr 95% CI: 0.066-0.131 vs 0.126-0.209; t = —2.545, p-value
=0.012, AD and controls, respectively). Therefore, the variations of the

graph metrics contain dynamic information that distinguishes AD and
control samples. Distributions of the average graph metrics over time
are shown in Fig. 3(b), which suggests that the mean of the average
modularity is significantly different in the AD and control groups (95%
CI: 2.501-2.680 vs 2.630-2.812, AD and control, respectively; ¢ =
—2.005, p-value = 0.047). However, after adjusting for the multiple
comparison, none of the average graph metrics is significantly different
in the two groups. Distributions of the graph metrics from the segments
with the maximal dwell time are shown in Fig. 3(c), which suggests
that none of those graph metrics is differentiable in the AD and control
groups. Consistent with the results from the segments with the maximal
dwell time, the static graph metrics in Fig. 3(d) also do not show
between group difference.

2.3. TVDN features are highly associated with AD and control classification

We study the effect of TVDN features and graph metrics to classify
AD (group 1) and control (group 0) groups through a logistic regression
model. The TVDN features include the number of eigenmodes, the
number of brain state switches, and the AWRSN, a 68 dimensional
vector, representing the weighted resting state networks over 68 brain
regions of interest (ROIs). The graph metrics of interest are the static
metrics: Lmean> Omean, and dynamic metrics: Lygr, Oygr. Here we
do not include L,,.,O.x because they are highly correlated with
Lmean-Omean, and none of them is associated with the AD and
control classification as shown in Fig. 3. Since some predictors are
highly correlated and the number of predictors is large, we add a
ridge regularization to the model to ease the collinearity among the
predictors. Moreover, we utilize the bootstrap method (Efron, 1979)
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Fig. 3. The distributions of the graph metrics extracted from the TVDN dynamic functional connectivity in AD and control groups. (a) The variance of the graph metrics across
different segments. (b) The mean graph metrics over the segments. (c) The graph metrics in the segments with the maximal dwell time. (d) The graph metrics from the static FC
in the network diffusion model. p-value <= 0.05 is used as a significance cutoff. Only the significant p-values are shown in the plots. The error bars represent the 95% confidence
interval of the means. AD: Alzheimer’s disease; FC: functional connectivity; TVDN: time-varying dynamic network model.
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Fig. 4. The results from regularized logistic regressions: (a) The estimated absolute effects from AWRSN projected to [0, 1] interval. Only the regions with p-values less than 0.05
are shown in the figure. (b) The ROCs of the leave-one-out prediction results from different models.

AUC: area under ROC curve; AWRSN:average weighted resting state network; DMD: dynamic mode decomposition model; ND: network diffusion model; PSD: power spectral density;
ROC: receiver operating characteristic; STA: spatial and temporal autocorrelation; TVDMD: time-varying dynamic mode decomposition model; TVDN: time-varying dynamic network

model.

to construct the 95% confidence interval (CI) and the p-values of the
effects from the TVDN features. We use p-values=0.05 as the cutoff
to determine significant difference between AD and control groups
(Table 1).

Consistent with the previous group comparison, the logistic regres-
sion showed that AD patients have a greater number of eigenmodes
(Table 1, positive estimators), and lesser number of brain state switches
(Table 1, negative estimator), compared to controls. Next, we examine
the regional patterns of the estimated absolute effects from AWRSN
(Fig. 4(a)), which shows the AWRSNs at twelve ROIs are significantly
different in AD and control groups when adjusting for other predictors
in the model. It is worth mentioning that the six graph metrics do not
significantly affect the AD and control classification after adjusting for
the other predictors.

2.4. Benchmark comparisons in classification

We perform a leave-one-out (LOO) procedure to examine the accu-
racy of using significant TVDN features identified in Table 1 to classify
AD and control samples. We first use 175 samples to train a ridge
regression model and predict the classification of the remaining one
sample. We iterate the procedure to predict the classification for all
samples and to depict the receiver operating characteristic (ROC) curve
in Fig. 4(b).

We compare the classification performance of using features from
TVDN model to the classification performances of using the features
from two static FC models: dynamic mode decomposition model (DMD)
(Brunton et al., 2016) and network diffusion model (ND) (Abdelnour
et al., 2014) and from one dynamic FC model: time-varying dynamic
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Table 1

TVDN results from a ridge regularized logistic regression: the effects from the predictors
of interest on the AD and control classifications (outcome). The predictors include the
number of eigenmodes, number of brain state switches, the dynamic and static graph
metrics and the AWRSN over 68 regions (the labels of the ROIs are presented in the
table) of interest are presented along with the corresponding 95% CI and p-value. All
predictors are all standardized by their sample means and standard deviations. Only
the significant spatial features are shown. p-value <= 0.05 is used as a significance
cutoff. AD: Alzheimer’s disease; AWRSN: average weighted resting state network;
CIL: confidence interval; ROI: region of interest; TVDN:time-varying dynamic network
method.

TVDN scalar features

Features Effect 95% CI P-value
Number of eigenmodes 1.093 ( 0.572, 1.613) < 0.001
Number of brain state switches -0.369 (-0.731, —-0.007) 0.046
TVDN graph metrics

Metrics Effect 95% CI P-value
Lyar -0.161 (-0.645, 0.323) 0.513
Ovar -0.153 (~0.478, 0.173) 0.358
Lmean 0.196 (-0.234, 0.626) 0.372
Omean -0.273 (-0.620, 0.073) 0.122

TVDN spatial features (p-value <= 0.05)

Features Absolute effect  95% CI P-value
Left rostral anterior cingulate 0.665 (0.319, 1.010) < 0.001
Left fusiform 0.619 (0.293, 0.944) < 0.001
Left lingual 0.492 (0.188, 0.797) 0.002
Left inferior parietal 0.611 (0.228, 0.993) 0.002
Right inferior temporal 0.463 (0.153, 0.774) 0.003
Left parahippocampal 0.383 (0.122, 0.645) 0.004
Left temporal pole 0.370 (0.077, 0.664) 0.013
Right pericalcarine 0.432 (0.068, 0.796) 0.020
Left superior temporal 0.332 (0.052, 0.612) 0.020
Left lateral occipital 0.446 (0.065, 0.827) 0.022
Left inferior temporal 0.392 (0.049, 0.734) 0.025
Left superior parietal 0.414 (0.041, 0.786) 0.029
Right cuneus 0.361 (0.016, 0.707) 0.040
Right inferior parietal 0.380 (0.006, 0.754) 0.046

mode decomposition model (TVDMD) (Kunert-Graf et al., 2019). DMD
assumes that the observed signal follows a multivariate autoregression
model, ND links two signals at consecutive times through a differential
equation model, while TVDMD is a sliding window based extension of
DMD. We extract the predictors including the number of eigenmodes,
AWRSN and static graph metrics from the static FC models. We also
extract the predictors including the number of eigenmodes, the number
of brain state switches, AWRSN, static and dynamic graph metrics from
the dynamic FC models. The detailed derivations of the predictors are
presented in Sections 4.5 and 4.6. To make a more comprehensive
comparison, we further compare the model using the TVDN features
with the spatial and temporal autocorrelation (STA) features introduced
in Shinn et al. (2023). Similar to Shinn et al. (2023), we also consider
region-wise lag one temporal autocorrelation (TA-4,) as well as two
spatial autocorrelation features in the comparative model: the rate
at which FC falls off with physical distance (SA-1) and the average
correlation between two distant brain regions SA-co. The methods
for extracting these additional features are detailed in Shinn et al.
(2023). Additionally, we also compare our model to the model using
the region-wise power spectral density (PSD). Similar to those used
in TVDN evaluation, we first perform a ridge regression to select im-
portant predictors based on their confidence intervals and then utilize
an independent ridge regression model on the selected predictors to
classify AD and control samples. We depict the prediction algorithms in
Section 4.7. In addition to the LOO we performed a Monte Carlo (MC)
cross validation (Xu and Liang, 2001), where we used 80% of samples
to train the model and predicted the classifications of the rest 20%
samples. We show the average AUC and their standard deviations from
10000 MC cross validation experiments in Table 2. The corresponding
ROC curves under different models are depicted in Fig. 4(b). The results
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show that TVDN performs the best among all the methods in classifying
AD and control samples. The dynamic FC models perform generally
better than the static models in the predictions. In addition to the out-
sample AUC, we also utilize the Akaike information criterion (AIC) and
Bayesian information criterion (BIC) to evaluate the models based on
different features. Table 2 suggests that using TVDN features yields the
lowest AIC and BIC values among all competing methods.

Finally, we study the effects of features and graph metrics from
the benchmark TVDMD, ND and DMD models in distinguishing AD
and control samples through a ridge regularized logistic regression.
The predictors of interest are summarized in Table 2 and the results
are summarized in Table 3. As shown in Table 3, the numbers of
eigenmodes from all models have a significant positive effect in dis-
tinguishing AD and control subjects. However, the effect size of the
number of eigenmodes from the TVDMD model is much smaller than
those from the TVDN, ND, DMD models. Furthermore, the effect size
of the number of brain state switches from the TVDMD model is much
smaller than those from the TVDN model. Moreover, consistent with
the finding in Section 2.2, none of the graph metrics from the static
models has significant effect on AD and control classification.

2.5. The relationship between TVDN features and the graph metrics

We further study the effects of TVDN scalar features on the brain
network connection through examining their correlation with the graph
metrics. This analysis aims to facilitate the interpretation of the TVDN
features and reveal the graph information that explained by the TVDN
features. We study the Pearson’s correlation between each of the two
TVDN scale features and each of the eight graph metrics. Here all 16
variables are standardized through dividing by their sample standard
deviations. We use p-value < 0.003 (0.05/16) as a significance cutoff
after adjusting for multiple testing. It is expected that all the dynamic
graph metrics in Table 4 are positively correlated with the frequency of
brain state switching, because a larger number of brain state switches
implies higher dynamicity in the FC which leads to more variable graph
metrics. Furthermore, Q, .., and O, also are significantly correlated
with the number of eigenmodes suggesting that a smaller number of
eigenmodes implies denser connections within the subdivisions of the
brain network from the dynamic FC. Moreover, the number of eigen-
modes is negatively correlated with Lygar, suggesting that a greater
number of eigenmodes implies less variations of path length over time.
Finally, since the static model does not contain dynamic information,
the TVDN scalar features are not associated with the graph metrics from
the static model.

3. Discussion

We demonstrate, for the first time, that the number of brain state
switches, representing the temporal complexity of the brain network,
in high-temporal resolution resting state MEG extracted by the time-
varying dynamic network (TVDN) algorithm is an important feature
that predicts AD. Specifically, AD subjects have fewer brain state transi-
tions and in turn longer dwell periods in any given brain state than the
control subjects. The number of eigenmodes, representing the spatial
complexity of the brain network, is also an important predictor for AD,
where AD subjects have greater number of eigenmodes, and hence a
more heterogeneous and complex functional brain network structure.
We also demonstrate that the variability of graph metrics such as
path length and modularity of dynamic functional connectivity periods
are reduced in AD subjects. Interestingly, the static graph metrics
corresponding to the brain state with the maximal dwell time or the
mean of all brain states are not distinguishable between AD and control
groups, while the dynamic graph metrics that correlated with the brain
state switching are significantly different in the two groups. Using a
data driven approach, TVDN identifies AD associated spatial features,
that are different between AD and controls, in the brain regions that
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Table 2
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The features and graph metrics used along with the corresponding AUCs, AICs and BICs of TVDN, TVDMD, ND, DMD, STA and PSD models. Static graph metrics include
Lmean:Qmean and the dynamic metrics include Lygay, Qyar. The best results are highlighted in bold. TVDN model outperforms all other methods across all performance metrics.
AUC: area under ROC curve; AWRSN: average weighted resting state network; DMD: dynamic mode decomposition model; LOO: leave-one-out; MC: Monte Carlo cross validation;
ND: network diffusion model; PSD: power spectral density; ROC: receiver operating characteristic; STA: spatial and temporal autocorrelation; SD: the standard deviation of the
AUCs over 10000 MC cross validation iterations; TVDMD: time-varying dynamic mode decomposition model; TVDN: time-varying dynamic network model.

Models Number of Number of AWRSN Static graph Dynamic graph AUC-LOO  AUC-MC (SD) AIC BIC
(Features) brain state eigenmodes metrics metrics
switches

Dynamic models

TVDN v 4 v v v 0.842 0.843 (0.064) 168.283 199.627

TVDMD v v v v v 0.770 0.774 (0.071) 239.257  239.832

Static models

ND v v v 0.754 0.765 (0.074) 211.606  230.679

DMD v v v 0.756 0.762 (0.074) 206.115  221.387

Other models

STA SA-2, SA-o0, regional TA-4, 0.777 0.788 (0.071) 198.648  221.442

PSD Total regional power within [1, 45] Hz 0.811 0.814 (0.068) 189.231 219.255
Table 3 Table 4

TVDMD, ND, DMD results from a ridge regularized logistic regression: the effects from
the predictors of interest on the AD and control classifications. The predictors include
the number of eigenmodes, number of brain state switches, the dynamic and static
graph metrics and the AWRSN over 68 regions of interest. Only the effects of the scalar
predictors are presented. All predictors are all standardized by their sample means and
standard deviations.

AWRSN:average weighted resting state network; DMD: dynamic mode decomposi-
tion model; ND: network diffusion model; TVDMD: time-varying dynamic mode
decomposition model.

Features and graph metrics Effect 95% CI P-value
TVDMD scalar features and graph metrics

Number of eigenmodes 0.008 ( 0.002,0.014) 0.005
Number of brain state switches 0.010 ( 0.004,0.015) 0.001
Lyar 0.010 ( 0.004,0.015) 0.001
Ovar 0.008 ( 0.003,0.014) 0.004
Lmean —0.005 (-0.010,0.001) 0.115
Omean —0.000 (—0.006,0.006) 0.980
ND scalar features

Number of eigenmodes 0.104 ( 0.042, 0.167) 0.001
Luic -0.011 (~0.087, 0.065) 0.775
Ogaiic 0.040 (-0.035, 0.115) 0.293
DMD scalar features

Number of eigenmodes 0.131 ( 0.072, 0.189) < 0.001
Laic —-0.022 (-0.097, 0.052) 0.554
Oqaiic ~0.063 (~0.132, 0.006) 0.074

reflect high tau accumulation. When compared with predictions using
features from other dynamic and static FC benchmarks, we show that
features from TVDN leads to the best sensitivity and specificity for
distinguishing AD and control samples. These results highlight the
importance of dynamic functional connectivity in resting-state data for
understanding the neural pathophysiology of AD.

High resolution MEG data provide convincing evidence that the brain state
switching patterns are altered in AD. Although static FC features ex-
tracted from MEG activity have proven to be reliable across different
MEG laboratories (Geisseler et al., 2016) and have demonstrated to be
an early biomarker of AD burden (Bajo et al., 2012; Fernandez et al.,
2006), literature is still scarce in studying the dynamic features from
MEG data for neurodegeneration. Our study utilizes the novel TVDN
method to extract the dynamic functional connectivity and brain state
transitions from MEG data. We find that the minimal dwell time in the
brain states is around 2 s, and half of the dwell times are less than 5 s.
Such fast brain state transitions are difficult to capture by using low
time resolution image modalities such as fMRI, because the samples
within each stationary time segment are too limited to provide accurate
estimates of the high dimensional whole brain functional connectivity.
On the contrary, high resolution MEG data provide sufficient samples

Pearson’s correlation between TVDN features and graph metrics. Lyar, Qyar are the
variances of the standardized path length, and modality over time; L .., Ope.n are the
means of corresponding graph metrics over time; L, ., O, are the graph metrics in
the segments with the maximal dwell time; and L., Q.. are the graph metrics from
the static FC model. p-value < 0.003 is used as the significance cutoff to account for
multiple testing.

FC: functional connectivity; TVDN: time-varying dynamic network model.

TVDN features

mean

Number of brain
state switches

Number of eigenmodes

Graph metrics Correlation p-value Correlation p-value
TVDN dynamic graph metrics

Lyar —-0.268 < 0.001 0.234 0.002
Ovar -0.120 0.114 0.284 < 0.001
TVDN static graph metrics

Loean -0.170 0.024 —-0.014 0.853
Orean -0.371 <0.001 0.032 0.670
Lo -0.111 0.143 —-0.018 0.811
Ornax —-0.254 0.001 —0.034 0.656
Graph metrics from the static model

Laic -0.160 0.034 0.225 0.003
Ogatic —-0.200 0.008 0.011 0.880

in each time segment to estimate functional connectivity, and hence
can be used to capture fast brain state transitions that distinguish the
AD and control samples.

TVDN graph metrics are highly associated with AD and control classifica-
tion. The application of graph theory to static resting state functional
connectivity in AD has provided conflicting results. Based on the resting
state fMRI data, Supekar et al. (2008) show no difference in the
average path length between the AD and control samples in their
study, while (Sanz-Arigita et al., 2010) show a decreased average
path length in the AD patients compared to the healthy control. In
a MEG study, (Stam et al., 2009) show that the similarities of the
graph metrics between AD and control samples varies across different
frequency bands. Our results show that the graph metrics from the
static models cannot effectively distinguish AD and control samples,
while Fig. 3 shows that the variations of the graph metrics provide
important information to distinguish AD and control subjects, which
can only be obtained from dynamic FCs. Furthermore, the graph met-
rics in the control group generally have higher variability than those
in the AD group and the variability patterns of the path length and
modularity in AD and control groups are significantly different. These
results highlight the importance of considering dynamic FC in AD
studies.
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TVDN features sufficiently capture the information in the graph metrics. A
comprehensive study on the TVDN features and graph metrics in Sec-
tion 2.5 finds that the TVDN features are strongly associated with the
graph metrics that differentiate AD and control groups (Lyar, Ovar)-
For example, the number of eigenmodes negatively affects Lygqy, sug-
gesting that a greater number of eigenmodes implies less variations of
path length over time. In addition, the number of brain state switches
are positively associated with the dynamic graph metrics. Finally,
when adjusting for the TVDN features, graph metrics do not contribute
to the AD and control classification (Table 1), which indicates that
the information in the graph metrics regarding the AD and control
distinction is sufficiently captured by the TVDN features.

AD patients have larger number of eigenmodes implying higher spatial
complexity of the brain network. Fig. 2 shows that the AD patients
have a significantly larger number of eigenmodes, which implies a
higher spatial complexity on average when comparing with the healthy
controls. This is because the additional eigenmodes in the AD subjects
introduce new bases in the lower dimensional manifold, which results
in a more heterogeneous and complex network structure. This is also
supported by the fact that a higher number of eigenmodes is negatively
associated with a lower modularity (Table 4), which leads to higher
structural complexity (Baldwin and Clark, 2000; Sinha et al., 2018).
These additional eigenmodes can form up AD specific pathological
networks that do not exist in healthy subjects. Consistent with this idea,
increase prevalence of pathophysiological epileptiform activity network
structures have indeed been reported in AD when compared to healthy
controls (Ranasinghe et al., 2022a; Vossel et al., 2016).

Dynamic features from TVDN with MEG imaging enhances the sensitivity
and specificity of AD and control classifications. We compare prediction
accuracies of using TVDN features, the features from TVDMD, a sliding
window based method, and the features from static FC models. As
shown in Table 2 and Fig. 4 (b), TVDN has much higher prediction ac-
curacy than the other models do, which shows the superiority of TVDN
on extracting robust features that are highly differential in AD and
control samples. Furthermore, the prediction accuracies are improved
by introducing the temporal features from TVDN, the number of brain
state switches, into the prediction model. This can be seen from Table 2
and Fig. 4 (b) that using the TVDN features yields the highest sensitivity
and specificity in classifying AD versus control subjects. Moreover, the
results in Tables 1 and 3 show that the effect size of the number of
eigenmodes and the number of brain state switches from TVDN are
much larger than those from the TVDMD model. Furthermore, using
the features from the TVDN model gives the best prediction accuracy
among all the comparative methods. The lower prediction accuracy
and smaller effect sizes from the TVDMD method could attribute to
its deficiencies inherited from the sliding window based method, such
as the arbitrariness of the window length selection and the curse of
dimensionality. Collectively, these results indicate that TVDN is a more
reliable method to detect brain state switches than TVDMD. It is worth
noting that modularity derived from the static FC significantly differs
between individuals with AD and healthy controls, as demonstrated
in Fig. 3 (Q,eqs)- However, when incorporating both dynamic and
static features into the model, the significance of the static features
diminishes, while the significance of the dynamic features remains, as
shown in Table 1. This implies that the dynamic FC features provides
crucial information, not present in static FC features, for effectively
distinguishing between AD and control samples.

fMRI studies of dynamic FC in AD. The present study uses MEG imaging
to demonstrate that dynamic functional connectivity features are ab-
normal and have predictive value in AD. Here, we review a larger fMRI
literature on dynamic functional studies in AD. Consistent with our
dwell time findings, Jones et al. (2012) suggest that the dwell time in
the default mode network are distinctive between AD dementia patients
and healthy controls. Brenner et al. (2018) also show that amnestic MCI
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patients spend more time in a single dominant state. Also consistent
with our observation of decreased number of switches in AD, Cérdova-
Palomera et al. (2017) show decreased global metastability between
functional states when comparing the patients with mild cognitive
impairment (MCI) and healthy controls. Similar to our findings on the
predictability of dynamic spatial features, Fu et al. (2019) examine
the shared and specific dynamic functional connectivity in subcortical
ischemic vascular disease and AD. Dautricourt et al. (2022) show that
dynamic FC states are differentially associated with dementia risk.
However, the above mentioned studies have not clearly demonstrated
that dynamic FC features can distinguish AD patients from healthy
controls (Jones et al., 2012; Cérdova-Palomera et al., 2017; Brenner
et al., 2018). In contrast, a recent study by de Vos et al. (2018) reveals
higher accuracy to distinguish AD dementia from healthy controls using
the variability of FC across time as a feature than static FC features,
perhaps the first clear evidence that the dynamic FC can be a strong
predictor of AD. However, their prediction model included a large
number of features and did not fully address which dynamic FC features
were important to distinguish AD and healthy subjects (de Vos et al,,
2018). Therefore, whether dynamic FC features have predictive power
to distinguish AD patients, and if so which features are important to
drive these predictions remain unknown from these prior fMRI studies.
Extending TVDN to fMRI data is important to address these questions.
Collecting resting state fMRI data and further research along these lines
are ongoing in our laboratory.

Dynamic FC features have higher predictive power than other benchmarks
do. It must be borne in mind that the present classifier results by
themselves do not argue for the exclusive use of dynamic FC features
as predictors of AD, whether for diagnostic or prognostic purposes. Our
contribution is to show that a model-based TVDN approach provides far
more predictive power in the use of dynamic FC compared to alternate
means of obtaining dynamic FC features, and that TVDN-derived dy-
namic features uncover important processes of the AD pathophysiology
that are currently being unreported by conventional static FC methods.

Spatial patterns of dynamic connectivity changes overlap with the regional
anatomy of AD pathophysiology. Fig. 4(a) shows the regional patterns
of the estimated effects from AWRSN that distinguish AD from healthy
elderly individuals. These regions include inferior and posterior tem-
poral cortices and posterior parietal-occipital cortices, which reflects
the same regional distribution of high tau accumulations, earliest hy-
pometabolism and go onto develop greatest neuronal loss in patients
with AD (Jagust, 2018). Distributions of tau accumulation both in space
and time have been linked to network connectivity measures using
various static network features, where functional connectivity based
models could reliably predict individual variability of tau accumulation
in AD (Franzmeier et al., 2020b,a). The proximity of spatial patterns
between abnormal dynamic functional connectivity indices and AD
pathophysiology relevant regional anatomy suggests that dynamic func-
tional connectivity features, in addition to static features may also be
worthwhile indices to explore as additional, complimentary predictors
of AD pathophysiology. It is also noteworthy that the spatial distribu-
tion of dynamic connectivity differences is more left predominant in our
findings. Although the biological significance of this lateralization of
dynamic functional changes is yet to be explored, such asymmetry has
been observed in previous resting state functional connectivity studies
as well (Medvedev, 2014; Di et al., 2014).

In conclusion, the fact that we find fewer brain state switches even
though there are more possible brain states, and increased maximal
dwell times suggests that brain dynamics alterations in AD have inde-
pendent spatial and temporal characteristics. Graph structure variations
are reduced in AD compared to controls suggests that dynamic graphs
are similar across time in AD with a specific network nodes identified
in Table 1 and Fig. 4a that are consistent nodes implicated in AD
pathophysiology. These results encourage further exploration and vali-
dation of spatial static and temporal dynamic patterns of the functional
connectivity from MEG data.
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4. Methods
4.1. Data and preprocessing

Each participant in our study underwent a complete clinical history,
physical examination, neuropsychological evaluation, brain magnetic
resonance imaging (MRI), and a 10-min session of resting MEG. All the
acquisition and processing pipelines are the same as that for a previ-
ous study (Ranasinghe et al., 2022b). All participants were recruited
from research cohorts at the University of California San Francisco-
Alzheimer’s Disease Research Center(UCSF-ADRC). Informed consent
was obtained from all participants and the study was approved by
the Institutional Review Board (IRB) at UCSF (UCSF-IRB 10-02245).
Demographics of cohorts are summarized in Table 5. All of the AD
patients included in this study had a clinical diagnosis of AD from the
UCSF Memory and Aging Clinic. Among our cohort, 65 individuals had
their excessive amyloid burden confirmed through amyloid PET scans.
Additionally, six patients’” AD diagnoses were verified autopsy, while
eight others were validated using CSF biomarkers.

4.2. Resting state MEG data acquisition and preprocessing

MEG scans were acquired on a whole-head biomagnetometer system
(275 axial gradiometers; MISL, Coquitlam, British Columbia, Canada),
following the same protocols described previously (Ranasinghe et al.,
2020, 2022b). Each subject underwent MEG recordings at rest, eyes-
closed and supine for 5-10 min. Three fiducial coils including nasion,
left and right preauricular points were placed to localize the position
of head relative to sensor array, and later coregistered to each indi-
vidual’s respective MRI to generate an individualized head shape. Data
collection was optimized to minimize within-session head movements
and to keep it below 0.5 cm. 5-10 min of continuous recording was
collected from each subject while lying supine and awake with eyes
closed (sampling rate: 600 Hz). We selected a 60 s (1 min) continuous
segment with minimal artifacts (minimal excessive scatter at signal
amplitude <10 pT), for each subject, for analysis. The study protocol
required the participant to be interactive with the investigator and
be awake at the beginning of the data collection. Spectral analysis of
each MEG recording and whenever available simultaneously collected
scalp EEG recordings were examined to confirm that the 60-second data
epoch represented awake, eyes closed resting state for each participant.
Artifact detection was confirmed by visual inspection of sensor data and
channels with excessive noise within individual subjects were removed
prior to analysis.

4.3. Source space reconstruction of MEG data and spectral power estima-
tion

Tomographic reconstructions of the MEG data were generated us-
ing a head model based on each participant’s structural MRI. Spa-
tiotemporal estimates of neural sources were generated using a time-
frequency optimized adaptive spatial filtering technique implemented
in the Neurodynamic Utility Toolbox for MEG (NUTMEG; https://
nutmeg.berkeley.edu/).

To prepare for source localization, all MEG sensor locations were
coregistered to each subject’s anatomical MRI scans. The lead field
(forward model) for each subject was calculated in NUTMEG using a
multiple local-spheres head model (three-orientation lead field) and
an 8-mm voxel grid which generated more than 5000 dipole sources,
all sources were normalized to have a norm of 1 (Dalal et al., 2008,
2011). The source space reconstruction approach provided amplitude
estimations at each voxel derived through the linear combination of
spatial weighting matrix with the sensor data matrix (Dalal et al.,
2008). A high-resolution anatomical MRI was obtained for each subject
(see below) and was spatially normalized to the Montreal Neurological
Institute (MNI) template brain using the SPM software (http://www.fil.
ion.ucl.ac.uk/spm), with the resulting parameters being applied to each
individual subject’s source space reconstruction within the NUTMEG

Neurolmage 281 (2023) 120358

Table 5

Baseline characteristics: The number of samples (percentiles) for gender, the mean
(standard deviation) for age, The number of samples (percentiles) of education level
and the mean MMSE score (standard deviation) are presented.

AD: Alzheimer’s disease; MMSE: Mini-mental state examination.

AD group  Control group  P-value
(n=88) (n=88)
Gender Male 35 (40%) 37 (42%) 0.878
Female 53 (60%) 51 (58%)
Age at MEG  (Years) 62.7 (8.7)  65.1 (10.0) 0.098
Education High school or below 25 (28%) 9 (10%) 0.057
Junior college 29 (33%) 19 (22%)
College 20 (25%) 23 (26%)
Graduate school or above 10 (11%) 14 (16%)
Missing 2 (2%) 23 (26%)
MMSE 22.1 (5.6) 29.4 (0.9) < 0.001

pipeline (Dalal et al., 2011). Tomographic reconstructions of source-
space voxel level data were parcellated into 68 cortical regions using
the Desikan—Killiany (DK) atlas (Desikan et al., 2006).

To construct the power spectral density (PSD), parcellated MEG data
are detrended and then subjected to a bandpass filter within the range
of [1, 45] Hz. Subsequently, Welch’s method is employed to derive the
PSD.

4.4. Time-varying dynamic network model

The time-varying dynamic network (TVDN) model is a robust
method to extract dynamic FCs from the neuroimaging data (Jiang
et al., 2022), which assumes the brain states experience discrete and
discontinuous changes over time. The dynamic FC features contain
static spatial feature (RSNs) and dynamic temporal feature (the dy-
namic weights of the RSNs).

Let X(r) be a d dimensional vector, denoting the brain activity at
time ¢ at d numbers of ROIs, and let X'(¢) be its derivative. The TVDN
model assumes

X'(n = AMX(),

where A(?) is a d X d connectivity matrix. The connectivity matrix A(r)
can be further decomposed as A(r) = UA(f)U~!, where the columns of
U represent the static RSNs, and the eigen-value matrix A(r), varying
across the time, represents the importance of each RSN. The real
and imaginary parts of A(r) represent the growth constant and signal
frequency, respectively. Since only a small number of RSNs are opera-
tional in the brain, typically ranges from 7-20 (Yeo et al., 2011), A(?) is
assumed to be a low-rank matrix, where the rank of the A(r) represents
the number of distinct static RSNs that are active in the resting state.

To extract the dynamic FC features, we first perform a B-spline
smoothing step to obtain noise free versions of X'(s) and X(r). Then,
we implement a kernel regression step to obtain the Nadaraya-Watson
estimator (Nadaraya, 1964; Watson, 1964) of A(r), denoted by K(t).
The static spatial feature U is then extracted as the top r eigen-vectors
of ), K(t), where we choose rank r so that the magnitude of the
top r eigen-values of Y, NG comprises 80% of the total sum of the
magnitude of them. Next, the brain state switches are detected by
minimizing a modified Bayesian information criteria (MBIC) through
the dynamic programming algorithm (Jackson et al., 2005) based on a
low dimensional transformation ﬁr‘l X(r), where ﬁ, is the first r columns
of the estimated U, and IAJ;l is the rxd dimensional generalized inverse
of ﬁ,. The brain activities are separated to different segments after
the detection procedure. Then we refit TVDN model in each segment,
while assuming A(z) is a constant. Furthermore, the temporal dynamic
weighted are obtained as the eigen-values of estimated A(r) in each
stationary segment, denoted by K,x,(t), which is a r x r dimensional
matrix. We obtain the WRSN feature as the column sum of IAJ,K,X,(t).
Finally, we first obtain W(r) = {(W;().i,j = 1,....d} = A®A®T and
construct the functional connectivity matrix through the following two
steps:
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1. let W,;(1) = W;;(t)/ ) Wy (OW);(0)

2. perform fisher transform and obtain the functional connectivity
matrix W(7) with the i,jth entry to be W;(r) = 0.5In{l +
W0}/ (1 = W)

All the tuning parameters in the TVDN procedure are tuned based
on the control samples.

The TVDN analysis is performed using the Python code from https:
//github.com/feigroup/TVDN, which contains detailed documentation
of the code usage.

4.5. Dynamic mode decomposition model and network diffusion model

We implement the dynamic mode decomposition model (DMD) and
the network diffusion model (ND) for comparison.

The DMD model assumes X(r + 1) = AX(¢) (Brunton et al., 2016),
where A is a d X d constant matrix. We obtain the estimated A by
minimizing the sum of the squared distance between X(¢ + 1) and
AX(t) over time. Then we obtained the estimated RSNs, denoted by
U, as the first r eigen-vectors corresponding to the top eigen-values,
whose summation comprises 80% of the total sum of the eigen-values.
Furthermore, we construct the WRSN feature as the column sum of
ﬁ,f&,x,, where ﬁ, is a d xr dimensional eigen-vector matrix, and K,X, is
a rxr dimensional eigen-value matrix. Since there is only one segment
resulted from the DMD model, AWRSN feature is the same as the WRSN
feature. Finally, we obtained the W = AAT and use steps 1, 2 in
Section 4.4 to generate the final connectivity matrix W.

The ND model assumes X'(r) = AX(r). We obtain the estimated A by
minimizing the sum of the squared distance between X'(r+1) and AX(?)
over time. The remaining steps for extracting spatial features from the
ND model are the same to the DMD model.

We implement TVDMD as follows where we construct windows with
192 frames sliding by 24 frames in each step. In each sliding-window,
TVDMD extracts the dynamic modes (Brunton et al., 2016; Kunert-
Graf et al.,, 2019) from the brain signals, and obtains the WRSN in
each sliding windows using the same procedures as those described
in DMD model above. The selection of the window size and step size
leads to 292 number of sliding windows, which is similar as those
used in Kunert-Graf et al. (2019). We then use Kmeans algorithm
to cluster the WRSNs to 3 clusters, which is the average number of
switches from the control group with the TVDN method. We define a
switch point as the time where there is a cluster membership change
before and after the time. These switch points divide the MEG data
into multiple segments, and in each segment we reestimate the WRSN
and the number of eigenmodes, whose corresponding magnitude of the
eigenvalues comprises 80% of the total sum of the magnitude of the
eigenvalues. We then average the WRSN as the AWRSN and calculate
the maximal number of RSNs across the multiple segments as the
number of RSNs.

The DMD and ND analysis were conducted using the Python code
(https://github.com/feigroup/TVDN-AD).

4.6. Graph metrics

The brain networks extracted from functional connectivity models
can be represented by graphs, which are the combination of ROIs, the
nodes in the graph, and the edges (Boccaletti et al., 2006), the region-
wise connections in the graph. The strength of the connections among
the ROIs, namely the edge weights, are mathematically captured by the
entries of the functional connectivity matrix W.

The path length L of the graph is defined as

_ dd-1
T o§d d -1’
Zi:l Zj:l,j;ei Lijl
where L;; is the shortest length of the path that goes from regions i to
J, where the length of a path is the summation of the inverse of edge
weights on the path (Wang et al., 2013).
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The modularity Q,,,, is a statistic that quantifies the degree to
which the network can be subdivided into different groups (Newman,
2006), where the optimal group structure is obtained by maximizing
the number of within-group connections, and minimizing the number
of between-group connections.

Let W;; be the i, jth entry of the functional connectivity matrix,
representing the strength of connection between ROI i and ROI j. If
Wi #0 (Wij = 0), region i and j are connected (diS(:Nonnected). For a
given partition p of the graph, the modularity index Q(p) is defined as

N

~ 5 [ w, S, \?
Q(p)—g; [W‘ <ﬁ> ]
where N, is the number of groups in the partition, W = %, ; W;; and
W, is sum of all the edge weights between the regions in the group
g Here let Sy = 3, ., Wij, S, = Tj; Sgi is the sum of the nodal
strength in group g. Finally Q = max,{Q(p)}, which is obtained by using
the spectral algorithm described in Newman (2006).

To eliminate this dependence of the graphic features on the size of
the graph, we normalize the three features through dividing them by
an ensemble of 100 random networks, which is described as follows.
We randomly permute the values in W, and create 100 sets of pseudo
graph features. We them divide the each of the two graphic features
by the corresponding means of the pseudo graph features over the 100
permutations.

To extract the graph characteristics, we adopted the bctpy pack-
age in python (https://pypi.org/project/bctpy/), which contains the
detailed documentation of the code usage.

4.7. Logistic regression with ridge regularization

In our manuscript, we adopted the logistic regression with the ridge
penalty as the classifier for the AD and control groups. The ridge
regularization was utilized due to the high-dimension feature in our
regression (Hoerl and Kennard, 1970).

With the ridge penalty, the loss function to optimize becomes

. PaT T
= + 7Y, py+ B X),
rl;%lzﬁﬁ (Y, By +B°X)

where X are the FC features, which can be different from TVDN, DMD,
ND models, Y = (Y;, ..., Yy)T is a vector a binary indicator with Y; = 1
or Y; = 0 if the ith subject is a AD patient or a healthy control,
respectively. The function #(-) is the negative log likelihood of the
logistic regression and p > 0 is the penalty parameter. The penalty
parameter is tuned by the leave-one-out evaluation within the training
set to ensure no testing data information is used during the training
procedure.

For each model, we implemented the two ridge regularized logistic
regressions. We use first ridge regression to select significant predictors
as the ones whose estimated 95% confidence intervals do not cover
zero. We then utilized the selected important predictors in the second
ridge regression model to evaluate the sensitivity and specificity of
classifying AD and control samples through leave-one-out (LOO) and
MC cross validation over 10000 repetitions. The penalty parameters
are tuned based on the training data to avoid information leaking in
the prediction.

With the ridge penalty, the effective degree of freedom (DF) is
not simply the number of free parameters in the model. We calculate
the DF of the model following (Sinkovec et al., 2021) which takes
the shrinkage effect of the ridge penalty into consideration. Then the
Akaike information criterion (AIC) and Bayesian information criterion
(BIC) is

AIC = —2£(Y, f, + B™X) + 2 x DF,
BIC = —2£(Y, B + BTX) + log(N) x DF.

We implemented the logistic regression with the ridge penalty by
the LogisticRegression function in sklearn package in Python.
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Table A.1

The comparison of AD and control groups of the brain state switches,
the dynamic and static graph metrics from TVDMD, ND, DMD results.
The p-values are from the student t-tests.

AD: Alzheimer’s disease; DMD: dynamic mode decomposition model;
ND: network diffusion model; TVDMD: time-varying dynamic mode
decomposition model.

Features and graph metrics AD - Control P-value
TVDMD scalar features and graph metrics

Number of eigenmodes 0.523 0.005
Number of brain state switches 14.932 0.001
Lyar 0.013 0.001
Ovar 0.027 0.005
Lmean —0.023 0.099
Omean —0.004 0.864
ND scalar features

Number of eigenmodes 1.182 < 0.001
Ly -0.021 0.437
Oyaiie 0.022 0.821
DMD scalar features

Number of eigenmodes 1.807 < 0.001
Lyuie —0.004 0.479
Ouuiic -0.176 0.002

The detailed documentation of the package is accessible at https:/
/scikit-learn.org/stable/modules/generated/sklearn.linear_model.Logis
ticRegression.html.
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