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A Additional numerical results

A.1 Variance parameter

We assess the impact of using the same ωs across the sequences in our BHM model. We
generate two-dimensional data from model I (homogeneous errors) and model II (het-
eroscedastic errors). Under each model, the data are generated with the same (N2(0, I2))
and distinct (N2(0,Σ)) variance parameters across the sequences, where I2 is an identity
covariance matrix and Σ = diag(0.8, 1.2). We estimate the change point locations by as-
suming the two sequences share the same variance or use different variance parameters.
The results in Table A.1 show that the two strategies yield similar performances across all
scenarios. Hence, we suggest to use the same ωs in practice which helps to reduce the com-
putational burden and numerical errors as well as facilitating the information borrowing
across the sequences.

Table A.1: Comparison results over 500 simulations when using the same or different vari-
ance parameters across the sequences with n = 2 under model I and model II, respectively.
Standard deviations are given in parentheses.

Data-generating Variance p̂− p0 Segmentation Error

Model Parameter ≤ −3 −2 −1 0 1 2 ≥ 3 d(K̂|K0) d(K0|K̂)
I, (ξ1k, ξ2k) ∼ N2(0, I2) Same 0 0 18 477 5 0 0 2.56 (2.83) 2.59 (3.86)

Different 0 0 25 473 2 0 0 2.56 (2.83) 2.26 (2.92)
I, (ξ1k, ξ2k) ∼ N2(0,Σ) Same 0 0 23 474 3 0 0 2.62 (2.91) 2.43 (3.42)

Different 0 0 25 472 3 0 0 2.62 (2.91) 2.36 (3.21)
II, (ξ1k, ξ2k) ∼ N2(0, I2) Same 0 0 3 341 135 21 0 1.23 (1.59) 6.32 (7.83)

Different 0 0 3 345 137 14 0 1.23 (1.59) 6.27 (7.88)
II, (ξ1k, ξ2k) ∼ N2(0,Σ) Same 0 0 19 479 2 0 0 2.28 (2.74) 2.03 (2.82)

Different 0 0 19 453 28 0 0 2.28 (2.74) 2.73 (4.07)
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A.2 Parameter tuning in the priors of BHM

Figure A.1: The maximum segmentation error versus α (left) and σ (right) over 500 simu-
lations with sample size T = 400, n = 2 under models I and II, respectively.

Figure A.2: The maximum segmentation errors versus the corresponding parameters for
the inverse moment prior (left), moment prior (middle) and local prior (right) over 500
simulations with sample size T = 400, n = 2 under model I.
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Figure A.3: The absolute difference |p̂ − p0| (left) and the maximum segmentation error
(right) versus T over 500 simulations under three priors: the nonlocal inverse moment prior
πµ,I with r = 0.6, φ = q = 2, nonlocal moment prior πµ,M with v = 1 and local prior πµ,L
with ψ = 2 under model I with n = 2.
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A.3 Determination of outliers

In the real data application, we determine the existence of the outliers as follows,

(1) Select a candidate point set H(mI) for the dataset with the screening algorithm in
the BHM method.

(2) Divide the dataset into segments based on the candidate point set and in this case,
we can assume the data points in each segment has homogeneous distribution.

(3) Conduct the generalized extreme studentized deviate (ESD) test (Rosner, 1983) for
each segment.

(4) If more than 12% of the segments contain outliers, we adopt the t likelihood; otherwise
a normal likelihood is adopted.

In our experiments, this procedure works well as shown in Figure A.4.

Figure A.4: The densities of proportions of segments containing outliers under model I
(normal error) and model III (t error). The black dotted line indicates 12%.

A.4 Autocorrelation in the wind turbine data

While we have shown robustness of the BHM method for the moving-average error (refer
to model V of Table 1), we also check the autocorrelation function (ACF) of the real data
and simulate the datasets with ACF similar to the real data. The ACFs of dataset 1 in the
wind turbine data are shown in Figure A.5. From the plots, it is clear that for the wind
turbine data, the first three sequences show significant autocorrelation while the other five
sequences are not significantly autocorrelated.
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Thus, we conduct the simulation studies with a mixed error model where the first
three sequences of the simulated dataset are with autoregressive (AR) errors while the
other five sequences follows model I in Section 5. Specifically, we adopt the AR(2) model,
i.e., ξik = 0.5ξi,k−1 + 0.2ξi,k−2 + ak with ak ∼ N(0, 3/5). The ACFs of the simulated
dataset are shown in Figure A.6 which has similar patterns to Figure A.5. We use an
independent normal likelihood in the BHM method and repeat the simulation for 500
times and the results are presented in Table A.2. Based on the results, the BHM-FIX
and BHM-MPP methods still yield satisfactory results under the mixed error datasets.
However, the nonparameteric ECP method deteriorates dramatically compared with the
results in Table 1.

Table A.2: Comparison results over 500 simulations among BHM-FIX, BHM-MPP, ECP
and DPMLE when n = 8 under the mixed error model. Standard deviations are given in
parentheses.

Data-generating p̂− p0 Segmentation Error
Model Method ≤ −3 −2 −1 0 1 2 ≥ 3 d(K̂|K0) d(K0|K̂)
Mixed errors BHM-FIX 0 0 0 486 14 0 0 0.08 (0.31) 0.54 (2.80)

BHM-MPP 0 0 0 484 16 0 0 0.03 (0.18) 0.52 (2.77)
ECP 0 0 0 24 49 101 326 0.22 (0.53) 20.34 (6.59)
DPMLE 500 0 0 0 0 0 0 59.79 (15.64) 0.12 (1.23)
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Figure A.5: The autocorrelation functions of dataset 1 in the wind turbine data.

6



Figure A.6: The autocorrelation functions of the simulated data.
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B Dynamic programming

For l = 0, 1, . . . , N , we define

H(j|l) ≡ max
K⊆{τ0,τ1,...,τj ,τj+1},|K|=l

U(K|Y(τ0,τj+1]).

The dynamic programming algorithm is given as Algorithm A.1.

Algorithm A.1 Dynamic programming
Input:

The upper bound of the number of change points M , dataset Y, candidate point set
H(mI).

1: Let A be an empty M ×N matrix.
2: for i = 0, . . . , N do
3: H(i|0)← u(Y(τ0,τi+1], s = 0)
4: end for
5: for l = 1, . . . ,M do
6: for i = l, . . . , N do
7: Al,i ← argmaxl−1≤k≤i−1{H(k|l − 1)u(Y(τk+1,τi+1], s = l)}
8: H(i|l)← maxl−1≤k≤i−1{H(k|l − 1)u(Y(τk+1,τi+1], s = l)}
9: end for

10: end for
11: p̂← argmaxl=0,1,...,MH(N |l)
12: if p̂ = 0 then
13: return ∅
14: else
15: s← p̂
16: t← N
17: E ← ∅
18: while s 6= 0 do
19: E ← E ∪ {As,t + 1}
20: s← s− 1
21: t← As,t
22: end while
23: return K̂ = {τi, i ∈ E}
24: end if
Output:

Estimated change point set K̂.
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C Proofs

We denote K0 as the true change point set with p0 change points, K̂ as the estimated
change point set with p̂ estimated change points. The mI-neighbourhood of a time point
Yk is defined as {Yl : l ∈ (k − mI , k + mI)}. Given an interval Y(a,b], we denote
p(a,b](θ) =

∏
k∈(a,b] f(Yk|θ) as the likelihood function, the corresponding log-likelihood

function is l(a,b](θ) = logp(a,b](θ). We also let θ̂(a,b] be the maximum likelihood esti-
mator (MLE) based on l(a,b](θ), and θ(a,b] be the true parameters on (a, b]. We denote

σ̂2
(a,b] = {−E(

∂2l(a,b](θ)

∂θ∂θ>
)
∣∣
θ=θ̂(a,b]

}−1 and let J(θ0) = −E ∂2logf(Y1|θ)

∂θ∂θ>

∣∣
θ=θ0

be the Fisher infor-

mation for one observation. We also define d as the dimension of θ. Finally, denote

C(Y(κs,κs+1]) =

∫
p(κs,κs+1](θs)π(θs)dθs.

We list the regularity conditions as follows.

(1) The prior for mean difference πµ(µ) is continuous with bounded first and second
derivatives.

(2) For a segment between two true change points κ0j and κ0,j+1 (j = 1, . . . , p0) with
parameters (µ1,j, . . . , µn,j), there exists δI > 0 such that for any i ∈ {1, . . . , n}, |µi,j|
is either greater than δI or equal to 0. Further, there is i ∈ {1, . . . , n} such that
|µi,j| > δI .

(3) The generic prior π(θ) is continuous and positive at all θi (i = 0, . . . , p0), where θi is
the true parameters for interval (κ0i, κ0,i+1].

(4) The regularity conditions (A1)–(A5) and (B1)–(B4).

Regularity conditions (A1)–(A5) and (B1)–(B4) are listed as follows. All the conditions
are multivariate extensions from (Du et al., 2016).

(A1) Θ is a closed set, and Θ ⊆ Rd.

(A2) The set of points {x : f(x|θ) > 0} is independent of θ. We denote this set by X .

(A3) If θ1, θ2 are two distinct points in Θ, then the Lebesgue measure of µ{x : f(x|θ1) 6=
f(x|θ2)} > 0.

(A4) Let x ∈ X , θ′ ∈ Θ. Then for all θ such that ‖θ−θ′‖ < δ, where ‖ · ‖ is the L2 norm,
with δ sufficiently small,

|logf(x|θ)− logf(x|θ′)| < Hδ(x,θ
′),

where

lim
δ→0

Hδ(x,θ
′) = 0,

and for any θ0 ∈ Θ,

lim
δ→0

∫
X
Hδ(x,θ

′)f(x|θ0)dµ = 0.
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(A5) If Θ is not bounded, then for any θ0 ∈ Θ, and sufficiently large ∆,

logf(x|θ)− logf(x|θ0) < K∆(x,θ0),

whenever ‖θ‖ > ∆, where

lim
∆→∞

∫
X
K∆(x,θ0)f(x|θ0)dµ < 0.

(B1) logf(x|θ) is twice differentiable with respect to θ in some neighborhood of θ0.

(B2) Let

J(θ0) =

[∫
X
f0
∂logf0

∂θ0i

∂logf0

∂θ0j

dµ

]d
i,j=1

,

where f0 denotes f(x|θ0), θ0i is the ith element of θ0. Then J(θ0) is positive definite.

(B3) For any 1 ≤ i, j ≤ d, ∫
X

∂f0

∂θ0i

dµ =

∫
X

∂2f0

∂θ0i∂θ0j

dµ = 0.

(B4) For δ > 0, if ‖θ − θ0‖ < δ, where δ is small enough, then∥∥∥∥∂2logf(x|θ)

∂θ∂θ>
− ∂2logf(x|θ0)

∂θ∂θ>

∥∥∥∥ < Mδ(x,θ0),

where limδ→0

∫
Mδ(x,θ0)f(x|θ0)dµ = 0.

Proof of Lemma 1:
We define j as an mI-flat point if there is no change point in (j−mI , j+mI). Let F be

the set of all mI-flat points. So |F| = T − p0(2mI − 1), where |F| denotes the cardinality
of set F . To prove Lemma 1, it is sufficient to show

Pr

(
min
k∈K0

Rk > max
l∈F

Rl

)
→ 1,

as T →∞. Note that

Pr

(
min
k∈K0

Rk > max
l∈F

Rl

)
≥ Pr

(
min
k∈K0

Rk > bT > max
l∈F

Rt

)
,

where bT is a positive sequence with respect to T . It follows that

Pr

(
min
k∈K0

Rk > bT > max
l∈F

Rl

)
= Pr {(∩k∈K0{Rk > bT}) ∩ (∩l∈F{Rl < bT})}
= 1− Pr {(∪k∈K0{Rk ≤ bT}) ∪ (∪l∈F{Rl ≥ bT})}
≥ 1− {Pr (∪k∈K0{Rk ≤ bT}) + Pr (∪l∈F{Rl ≥ bT})}

≥ 1−

{∑
k∈K0

Pr ({Rk ≤ bT}) +
∑
l∈F

Pr ({Rl ≥ bT})

}
.
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We define

Rij =

∫ ∏j+mI

l=j+1 exp{−(Yil − Y ij − µ)2}π(µ)dµ∏j+mI

l=j+1 exp{−(Yil − Y ij)2}
, for i = 1, . . . , n,

where Y ij = m−1
I

∑j
l=j−mI+1 Yil. Clearly, Rj =

∏n
i=1Rij.

For any change point k ∈ K0, assume nx sequences have mean shifts at this change
point. By regularity condition (2), we know nx ≥ 1 and the absolute change of mean is
greater than δI .

Without loss of generality, assume the first nx sequences have mean changes. By Lemma
1 of Jiang, Yin, and Dominici (2018), we have

lim
T→∞

Pr{Rik > exp(DmIδI)} = 1, (1)

when there is a mean shift in sequence i at change point k, where D > 0 is a constant.
Then we set

bT = exp(DδImI/2).

For any l ∈ F , by Lemmas 2, 3, 4 of Jiang, Yin, and Dominici (2018), there exist c, C > 0
such that

caT ≤ Ril ≤ CaT , (2)

so

Rl =
n∏
i=1

Ril = Op(a
n
T ),

where aT = m
−1/2
I , m

−v−1/2
I and exp(−ms/(s+1)

I ) correspond to the local prior, moment
prior and inverse moment prior. Consequently, we have

Pr(Rl ≥ bT ) = O{anT exp(−DδImI/2)},∑
l:tl∈F

Pr (Rl ≥ bT ) = O{TanT exp(−DδImI/2)} = o(1), (3)

since mI/(logT )1+ε → c > 0.
Next, for k ∈ K0, by (1), we know for i = 1, . . . , nx, we have

lim
T→∞

Pr{Rik > exp(DmIδI)} = 1.

As a result,

lim
T→∞

Pr

{
nx∏
i=1

Rik > exp(nxDmIδI)

}
= 1. (4)
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Consequently, we obtain

Pr(Rk ≤ bT )

= Pr

(
nx∏
i=1

Rik

n∏
j=nx+1

Rjk ≤ bT

)

= Pr

{
nx∏
i=1

Rik

n∏
j=nx+1

Rjk ≤ bT ,
nx∏
i=1

Rik > exp(nxDδImI)

}

+ Pr

{
nx∏
i=1

Rik

n∏
j=nx+1

Rjk ≤ bT ,
nx∏
i=1

Rik ≤ exp(nxDδImI)

}

≤ Pr

{
exp(nxDδImI)

n∏
j=nx+1

Rjk ≤ bT

}
+ Pr

{
nx∏
i=1

Rik ≤ exp(nxDδImI)

}
.

Combining with (4),

lim
T→∞

Pr(Rk ≤ bT ) ≤ lim
T→∞

Pr

{
exp(nxDmIδI)

n∏
j=nx+1

Rjk ≤ bT

}
.

For j = nx + 1, . . . , n, by (2), ∃c1, C1 > 0 such that

c1a
n−nx
T ≤

n∏
j=nx+1

Rjk ≤ C1a
n−nx
T ,

and

C−1
1 anx−n

T ≤

(
n∏

j=nx+1

Rjk

)−1

≤ c−1
1 anx−n

T .

This implies

Pr

{
exp(nxDmIδI)

n∏
j=nx+1

Rjk ≤ bT

}

= Pr


(

n∏
j=nx+1

Rjk

)−1

≥ exp(nxDmIδI)b
−1
T


≤ c−1

1 anx−n
T

exp(nxDmIδI)b
−1
T

= c−1
1 anx−n

T exp(−nxDmIδI)bT ,

where the second to the last inequality holds by the Markov inequality. Therefore

Pr (Rk ≤ bT ) = O{anx−n
T exp(−nxDmIδI)bT}.
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Thus, we obtain∑
k∈K0

Pr (Rk ≤ bT ) = O
[
p0a

nx−n
T exp{−(nx − 1/2)DmIδI}

]
= o(1), (5)

since mI/(logT )1+ε → c > 0. Then using (3) and (5), we achieve:

Pr

(
min
k∈K0

Rk > max
l∈F

Rl

)
≥ Pr

(
min
k∈K0

Rk > bT > max
l∈F

Rl

)
= Pr {(∩k∈K0{Rk > bT}) ∩ (∩l∈F{Rl < bT})}

≥ 1−

{∑
k∈K0

Pr ({Rk ≤ bT}) +
∑
l∈F

Pr ({Rl ≥ bT})

}
= 1− o(1).

Finally, we know

Pr

(
min
k∈K0

Rk > max
l∈F

Rl

)
−→ 1,

as T →∞.

Lemma 3. Under conditions (A1)–(A5) and (B1)–(B4), if there is no change point in
the interval (a, b], and the true value of parameter within this segment is θ(a,b], then as
(b− a)→∞,

1. Let N0(δ) = {θ : ‖θ − θ(a,b]‖ < δ} be a neighborhood of θ(a,b] contained in Θ, the
parameter space, there exists a positive number kθ(a,b](δ), depending on θ(a,b] and δ,
such that

lim
(b−a)→∞

Pr

{
sup

θ/∈N0(δ)

l(a,b](θ)− l(a,b](θ(a,b])

b− a
< −kθ(a,b](δ)

}
= 1;

2. l(a,b](θ(a,b])− l(a,b](θ̂(a,b]) = Op(1).

Proof:
The proof of Lemma 3 is a direct multi-dimensional extension from Theorem 1 of Walker

(1969).
The following result is Theorem 3.1 of Fraser and Mcdunnough (1984), and the reg-

ularity conditions (A1)–(A5) and (B1)–(B4) imply the three assumptions in Fraser and
Mcdunnough (1984).

Lemma 4. Suppose conditions (A1)–(A5) and (B1)–(B4) hold. For i.i.d samples {Y1, . . . ,YT}
from f(Y|θ0), let σ̂2 = {−E(

∂2logp(θ)

∂θ∂θ>
)
∣∣
θ=θ̂
}−1 and p(θ) =

∏
k:tk∈(0,1] f(Yk|θ) , where θ̂ is
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the MLE of θ0. If w(θ) ≥ 0 for all θ ∈ Θ and satisfies
∫
w(θ)p(θ)dθ < ∞ and is

continuous and nonzero at the true θ0, then

det(σ̂)w(θ̂)p(θ̂)∫
w(θ)p(θ)dθ

a.s.−→ (2π)−d/2.

Lemma 5. Assume conditions in Theorem 1 hold. Suppose that there are r change points
in (a, b), say {κ1, . . . , κr}, with κ1 < . . . < κr. Further assume (κi+1−κi)→∞, i = 0, . . . , r
(let κ0 = a, κr+1 = b) as (b − a) → ∞. Then let κ = mini=0,...,r (κi+1 − κi), ∃c2 > 0 such
that

C(Y(a,b])

C(Y(a,κ1]) · · ·C(Y(κr,b])
= Op

{
(b− a)rd/2 exp(−κc2)

}
.

Proof:
The r change points separate the sequences into r + 1 segments. We first assume all

the r + 1 segments have different parameters denoted as θ1, . . . ,θr+1. Then we can find a
δ and define Ni(δ) = {θ : ‖θ − θi‖ < δ}, i = 1, . . . , r + 1 such that Ni(δ) ∩Nj(δ) = ∅ for
i 6= j. We write

C(Y(a,b]) =
r+1∑
i=0

Ii

where

Ii =

∫
Ni(δ)

p(a,b](θ)π(θ)dθ, for i = 1, . . . , r + 1,

I0 =

∫
Θ−∪r+1

i=1Ni(δ)

p(a,b](θ)π(θ)dθ.

By Lemma 4, we have

C(Y(κi−1,κi]) = p(κi−1,κi](θ̂(κi−1,κi])π(θ̂(κi−1,κi]) det(σ̂(κi−1,κi])Op(1)

6= p(κi−1,κi](θ̂(κi−1,κi])π(θ̂(κi−1,κi]) det(σ̂(κi−1,κi])op(1). (6)

where i = 1, . . . , r + 1. Note that by definition of σ̂(κi−1,κi],

det(σ̂(κi−1,κi]) = Op{(κi − κi−1)−d/2},
det(σ̂(κi−1,κi]) 6= op{(κi − κi−1)−d/2}. (7)
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By (6), for j 6= 0, we obtain

Ij
C(Y(a,κ1]) · · ·C(Y(κr,b])

=

∫
Nj(δ)

π(θ)p(κ0,κ1](θ) · · · p(κr,κr+1](θ)dθ

C(Y(a,κ1]) · · ·C(Y(κr,b])

=
Op(1)

∫
Nj(δ)

π(θ)p(κ0,κ1](θ) · · · p(κr,κr+1](θ)dθ

C(Y(κj−1,κj ])
∏

i 6=j p(κi−1,κi](θ̂(κi−1,κi])π(θ̂(κi−1,κi]) det(σ̂(κi−1,κi])

=
Op(1)

∫
Nj(δ)

π(θ)p(κ0,κ1](θ) · · · p(κr,κr+1](θ)dθ

C(Y(κj−1,κj ])
∏

i 6=j p(κi−1,κi](θi)π(θ̂(κi−1,κi]) det(σ̂(κi−1,κi])

=

∫
Nj(δ)

π(θ)p(κ0,κ1](θ) · · · p(κr,κr+1](θ)dθ

C(Y(κj−1,κj ])
∏

i 6=j p(κi−1,κi](θi)π(θ̂(κi−1,κi])Op{(κi − κi−1)−d/2}

=

∫
Nj(δ)

π(θ)p(κ0,κ1](θ) · · · p(κr,κr+1](θ)dθ

C(Y(κj−1,κj ])
∏

i 6=j p(κi−1,κi](θi)π(θi)Op{(κi − κi−1)−d/2}
, (8)

where the third equality in the above equation is due to the second result of Lemma 3, the
fourth is by (7), and the last one is by the continuous mapping theorem.
Using the first result of Lemma 3, ∃k(δ) > 0 such that∫

Nj(δ)
π(θ)p(κ0,κ1](θ) · · · p(κr,κr+1](θ)dθ

C(Y(κj−1,κj ])
∏

i 6=j p(κi−1,κi](θi)π(θi)

=
1

C(Y(κj−1,κj ])

∫
Nj(δ)

π(θ)p(κj−1,κj ](θ)
∏
i 6=j

exp{l(κi−1,κi](θ)− l(κi−1,κi](θi)}dθ

<
1

C(Y(κj−1,κj ])

∏
i 6=j

exp{−(κi − κi−1)k(δ)}
∫
Nj(δ)

p(κj−1,κj ](θ)π(θ)dθ

≤ 1

C(Y(κj−1,κj ])

∏
i 6=j

exp{−(κi − κi−1)k(δ)}
∫

Θ

p(κj−1,κj ](θ)π(θ)dθ

=
∏
i 6=j

exp{−(κi − κi−1)k(δ)} (9)

with probability tending to unit as (b− a)→∞. Combining (8) and (9), we achieve

Ij
C(Y(a,κ1]) · · ·C(Y(κr,b])

= Op

[∏
i 6=j

(κi − κi−1)d/2 exp{−(κi − κi−1)k(δ)}

]
= Op

{
(b− a)rd/2 exp(−κk(δ))

}
.

For I0, we apply the same argument, but note that the region Θ − ∪r+1
i=1Ni(δ) does not
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contain the neighborhood of any θi, so

I0

C(Y(a,κ1]) · · ·C(Y(κr,b])

would have a faster convergence rate compared with

Ij
C(Y(a,κ1]) · · ·C(Y(κr,b])

.

Thus we achieve

C(Y(a,b])

C(Y(a,κ1]) · · ·C(Y(κr,b])
=

∑r+1
i=0 Ii

C(Y(a,κ1]) · · ·C(Y(κr,b])
= Op

{
(b− a)rd/2 exp(−κk(δ))

}
.

If some segments share the same parameters, without loss of generality, we assume only
θ1 = θ3 then N1(δ) = N3(δ). The argument is analogous when more than two segments
share the same parameters.

For j 6= 1 or 3, the argument is identical to the above. When j = 1 (and there is no I3,
since θ1 = θ3), following similar discussions for (8) and (9),

I1

C(Y(a,κ1]) · · ·C(Y(κr,b])

=

∫
Nj(δ)

π(θ)p(κ0,κ1](θ) · · · p(κr,κr+1](θ)dθ

C(Y(κ0,κ1])C(Y(κ2,κ3])
∏

i 6=1,3 p(κi−1,κi](θi)π(θi)Op{(κi − κi−1)−d/2}

≤
∫

Θ
p(κ0,κ1](θ)p(κ2,κ3](θ)π(θ)dθ

C(Y(κ0,κ1])C(Y(κ2,κ3])

∏
i 6=1,3

exp{−(κi − κi−1)k(δ)}Op{(κi − κi−1)d/2}.(10)

Using similar discussion for (15),∫
Θ
p(κ0,κ1](θ)p(κ2,κ3](θ)π(θ)dθ

C(Y(κ0,κ1])C(Y(κ2,κ3])
= Op

{
(κ3 − κ2)(κ1 − κ0)

(κ3 − κ2) + (κ1 − κ0)

}d/2
. (11)

Combining (10) and (11), we achieve

I1

C(Y(a,κ1]) · · ·C(Y(κr,b])

= Op

{ ∏r+1
i=1 (κi − κi−1)

(κ3 − κ2) + (κ1 − κ0)

}d/2

Op

[∏
i 6=1,3

exp{−(κi − κi−1)k(δ)}

]
= Op

{
(b− a)rd/2 exp(−κk(δ))

}
.

Then we obtain

C(Y(a,b])

C(Y(a,κ1]) · · ·C(Y(κr,b])
= Op

{
(b− a)rd/2 exp(−κk(δ))

}
.

16



Lemma 6. Assume conditions in Theorem 1 hold, and K0 is a subset of H(mI). Let K̂
be the estimated change point set determined by our algorithm. Suppose that there exists a
true change point κ0j /∈ K̂. Let κ̂i and κ̂i+1 be the estimated change point which sandwich
κ0j, and κ̂i < κ0,j−l < . . . < κ0j < . . . < κ0,l+r < κ̂i+1, where l, r ≥ 0. Considering a new
estimated change point set

K̃ = {κ̂1, . . . , κ̂i, κ0,j−l, . . . , κ0,j+r, κ̂i+1, . . . , κ̂p̂},

then

Pr(K̂|Y)

Pr(K̃|Y)
= op(1).

Proof: Let T0 = κ̂i+1 − κ̂i, t1 = κ0,j−l − κ̂i, . . . , tl+r+2 = κ̂i+1 − κ0,j+r. By the Stirling
formula, we have

Pr(K̂|Y)

Pr(K̃|Y)

=

∏T0−1
j=1 (j − σ)

∏l+r+2
h=1 th!

T0!
∏l+r+2

h=1

∏th−1
j=1 (j − σ)

p̂+l+r+1∏
s=p̂+1

(
s+ 1

α + sσ

)
C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i,κ0,j−l]) · · ·C(Y(κ0,j+r,κ̂i+1])

=
C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i,κ0,j−l]) · · ·C(Y(κ0,j+r,κ̂i+1])
O

(∏l+r+2
j=1 tj

T0

)1+σ

.

By Lemma 5, let κ = mini=1,...,l+r+2 ti, there exists c2 > 0 such that

C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i,κ0,j−l]) · · ·C(Y(κ0,j+r,κ̂i+1])
= Op

{
T

(l+r+1)d/2
0 exp(−κc2)

}
.

Thus we obtain

Pr(K̂|Y)

Pr(K̃|Y)

= O

(∏l+r+2
j=1 tj

T0

)1+σ
C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i,κ0,j−l]) · · ·C(Y(κ0,j+r,κ̂i+1])

= O

(∏l+r+2
j=1 tj

T0

)1+σ

Op

{
T

(l+r+1)d/2
0 exp(−κc2)

}
= Op

{
T

(l+r+1)(d/2+1+σ)
0 exp(−κc2)

}
. (12)

By definition of H(mI),

κ ≥ mI ≥ c{log(T )}1+ε
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for some c > 0 and ε > 0 when T is large enough. Clearly, T ≥ T0. Thus as T →∞,

T
(l+r+1)(d/2+1+σ)
0 exp(−κc2)

≤ T (l+r+1)(d/2+1+σ) exp
[
−{log(T )}1+εcc2

]
= exp

[
log(T )c0 − {log(T )}1+εcc2

]
= exp (log(T )[c0 − {log(T )}εcc2]) −→ 0 (13)

where c0 = (l + r + 1)(d/2 + 1 + σ). With (12) and (13), we achieve

Pr(K̂|Y)

Pr(K̃|Y)
= op(1).

Lemma 7. Assume the conditions in Theorem 1 hold, and K0 is a subset of H(mI). Let K̂
be the estimated change point set determined by our algorithm. Suppose that there exists an
estimated change point κ̂i, such that no true change point is within its mI-neighbourhood,
i.e., κ0j /∈ (κ̂i −mI , κ̂i +mI) for all j. Considering a newly estimated change point set

K̃ = {κ̂1, . . . , κ̂i−1, κ̂i+1, . . . , κ̂p̂},

then

Pr(K̂|Y)

Pr(K̃|Y)
= op(1).

Proof: By the Stirling formula, we have

Pr(K̂|Y)

Pr(K̃|Y)

=
α + (p̂+ 1)σ

p̂+ 2

C(Y(κ̂i−1,κ̂i])C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i−1,κ̂i+1])

×
∏κ̂i+1−κ̂i−1

j=1 (j − σ)/(κ̂i+1 − κ̂i)!∏κ̂i+1−κ̂i−1−1
j=1 (j − σ)/(κ̂i+1 − κ̂i−1)!

κ̂i−κ̂i−1−1∏
j=1

(j − σ)/(κ̂i − κ̂i−1)!

=
α + (p̂+ 1)σ

p̂+ 2

C(Y(κ̂i−1,κ̂i])C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i−1,κ̂i+1])

× Γ(κ̂i − κ̂i−1 − σ)Γ(κ̂i+1 − κ̂i − σ)(κ̂i+1 − κ̂i−1)!

Γ(1− σ)Γ(κ̂i+1 − κ̂i−1 − σ)(κ̂i − κ̂i−1)!(κ̂i+1 − κ̂i)!

= O

{
(κ̂i+1 − κ̂i−1)

(κ̂i+1 − κ̂i)(κ̂i − κ̂i−1)

}1+σ C(Y(κ̂i−1,κ̂i])C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i−1,κ̂i+1])
. (14)

By Lemma 6, every true change point κ0j is in K̂. Thus, there is no true change point
between κ̂i−1 and κ̂i+1. Then using Lemma 4, we obtain

C(Y(κ̂i−1,κ̂i]) = p(κ̂i−1,κ̂i](θ̂(κ̂i−1,κ̂i])π(θ̂(κ̂i−1,κ̂i]) det(σ̂(κ̂i−1,κ̂i])Op(1),

C(Y(κ̂i,κ̂i+1]) = p(κ̂i,κ̂i+1](θ̂(κ̂i,κ̂i+1])π(θ̂(κ̂i,κ̂i+1]) det(σ̂(κ̂i,κ̂i+1])Op(1),

C(Y(κ̂i−1,κ̂i+1]) = p(κ̂i−1,κ̂i+1](θ̂(κ̂i−1,κ̂i+1])π(θ̂(κ̂i−1,κ̂i+1]) det(σ̂(κ̂i−1,κ̂i+1])Op(1).
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It follows that

C(Y(κ̂i−1,κ̂i])C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i−1,κ̂i+1])

=
p(κ̂i−1,κ̂i](θ̂(κ̂i−1,κ̂i]) det(σ̂(κ̂i−1,κ̂i])

p(κ̂i−1,κ̂i+1](θ̂(κ̂i−1,κ̂i+1])
×
p(κ̂i,κ̂i+1](θ̂(κ̂i,κ̂i+1]) det(σ̂(κ̂i,κ̂i+1])

π(θ̂(κ̂i−1,κ̂i+1])

×
π(θ̂(κ̂i−1,κ̂i])π(θ̂(κ̂i,κ̂i+1])

det(σ̂(κ̂i−1,κ̂i+1])
Op(1).

As θ̂(κ̂i−1,κ̂i]
P→ θ0, θ̂(κ̂i,κ̂i+1]

P→ θ0 and θ̂(κ̂i−1,κ̂i+1]
P→ θ0 where θ0 is the true parameter, and

π(θ) is continuous, by the continuous mapping theorem, we know

C(Y(κ̂i−1,κ̂i])C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i−1,κ̂i+1])

=
p(κ̂i−1,κ̂i](θ̂(κ̂i−1,κ̂i]) det(σ̂(κ̂i−1,κ̂i])

p(κ̂i−1,κ̂i+1](θ̂(κ̂i−1,κ̂i+1])
×
p(κ̂i,κ̂i+1](θ̂(κ̂i,κ̂i+1]) det(σ̂(κ̂i,κ̂i+1])

det(σ̂(κ̂i−1,κ̂i+1])
Op(1)

Further,

C(Y(κ̂i−1,κ̂i])C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i−1,κ̂i+1])

=
p(κ̂i−1,κ̂i](θ̂(κ̂i−1,κ̂i]) det(σ̂(κ̂i−1,κ̂i])

p(κ̂i−1,κ̂i+1](θ̂(κ̂i−1,κ̂i+1])
×
p(κ̂i,κ̂i+1](θ̂(κ̂i,κ̂i+1]) det(σ̂(κ̂i,κ̂i+1])

det(σ̂(κ̂i−1,κ̂i+1])
Op(1)

=
p(κ̂i−1,κ̂i](θ̂(κ̂i−1,κ̂i])p(κ̂i,κ̂i+1](θ̂(κ̂i,κ̂i+1])

p(κ̂i−1,κ̂i+1](θ̂(κ̂i−1,κ̂i+1])
Op

{
κ̂i+1 − κ̂i−1

(κ̂i+1 − κ̂i)(κ̂i − κ̂i−1)

}d/2
. (15)

Note that by the second result of Lemma 3,

p(κ̂i−1,κ̂i](θ̂(κ̂i−1,κ̂i])p(κ̂i,κ̂i+1](θ̂(κ̂i,κ̂i+1])

p(κ̂i−1,κ̂i+1](θ̂(κ̂i−1,κ̂i+1])

=
p(κ̂i,κ̂i+1](θ̂(κ̂i,κ̂i+1])p(κ̂i−1,κ̂i](θ̂(κ̂i−1,κ̂i])p(κ̂i−1,κ̂i](θ0)−1

p(κ̂i,κ̂i+1](θ0)p(κ̂i−1,κ̂i+1](θ̂(κ̂i−1,κ̂i+1])p(κ̂i−1,κ̂i+1](θ0)−1

= Op(1). (16)

Thus, combining (14), (15) and (16), we obtain

Pr(K̂|Y)

Pr(K̃|Y)
= O

{
(κ̂i+1 − κ̂i−1)

(κ̂i+1 − κ̂i)(κ̂i − κ̂i−1)

}1+σ C(Y(κ̂i−1,κ̂i])C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i−1,κ̂i+1])

= O

{
(κ̂i+1 − κ̂i−1)

(κ̂i+1 − κ̂i)(κ̂i − κ̂i−1)

}1+σ

Op

{
κ̂i+1 − κ̂i−1

(κ̂i+1 − κ̂i)(κ̂i − κ̂i−1)

}d/2
= Op

{
κ̂i+1 − κ̂i−1

(κ̂i+1 − κ̂i)(κ̂i − κ̂i−1)

}d/2+1+σ

.
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Note that (κ̂i+1 − κ̂i) + (κ̂i − κ̂i−1) = (κ̂i+1 − κ̂i−1), thus either (κ̂i+1 − κ̂i−1)/(κ̂i+1 − κ̂i) or
(κ̂i+1 − κ̂i−1)/(κ̂i − κ̂i−1) will go to a constant c > 0 as T →∞. Therefore,

κ̂i+1 − κ̂i−1

(κ̂i+1 − κ̂i)(κ̂i − κ̂i−1)
→ 0,

since both (κ̂i − κ̂i−1) and (κ̂i+1 − κ̂i) go to infinity as T →∞. It follows that

Pr(K̂|Y)

Pr(K̃|Y)
= Op

{
κ̂i+1 − κ̂i−1

(κ̂i+1 − κ̂i)(κ̂i − κ̂i−1)

}d/2+1+σ

= op(1).

Proof of Theorem 1:
By Lemma 6, we know all the true change points will fall into K̂ with probability one as

T → ∞. Lemme 7 implies that all the estimated change points out of mI-neighbourhood
of true change points can be removed in probability as T → ∞. By the definition of set
H(mI), for any two points τi and τj with τi < τj in H(mI), (τj− τi) > mI . We obtain K̂ by
optimizing over H(mI). Thus for any true change point, there is one and only one point in

K̂ within its mI-neighbourhood, i.e., the true change point itself. Therefore, with T →∞,

p̂
P−→ p0 and sup

b∈K0

inf
a∈K̂
|a− b| = Op (1) .
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