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Abstract

Motivated by the wind turbine anomaly detection, we propose a Bayesian hi-
erarchical model (BHM) for the mean-change detection in multivariate sequences.
By combining the exchange random order distribution induced from the Poisson–
Dirichlet process and nonlocal priors, BHM exhibits satisfactory performance for
mean-shift detection with multivariate sequences under different error distributions.
In particular, BHM yields the smallest detection error compared with other competi-
tive methods considered in the paper. We utilize a local scan procedure to accelerate
the computation, while the anomaly locations are determined by maximizing the
posterior probability through dynamic programming. We establish consistency of
the estimated number and locations of the change points and conduct extensive sim-
ulations to evaluate the BHM approach. Among the popular change point detection
algorithms, BHM yields the best performance for most of the datasets in terms of the
F1 score for the wind turbine anomaly detection. Supplementary materials for this
article are available online.
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1 Introduction

The wind turbine blade is the core component of the wind power generation system, and

hence the failure of the wind turbine blade directly leads to the dysfunction of the whole

system. One leading cause of the wind turbine failure is the accumulated ice that covers the

turbine as shown in the left panel of Figure 1. Typically, the Supervisory Control and Data

Acquisition (SCADA) system is used to examine the ice level in real time by monitoring

several signal sequences simultaneously, such as wind speed, environment temperature and

accelerated speed. Once the ice on the wind turbine reaches a certain level that may lead

to the failure of the system, some of the signals would exhibit mean shifts as shown in the

right panel of Figure 1.

Figure 1: The wind turbine blade covered by ice (left) and the mean shifts of the wind

speed, environment temperature and accelerated speed (right). The vertical dashed black

line highlights the change point location.

To timely capture the anomalies on the wind turbines, we apply several existing mean

detection algorithms to the signals generated by the SCADA system, including E-division

(ECP) (Matteson and James, 2014), the dynamic programming based maximum likelihood

2



estimation (DPMLE) (Maboudou-Tchao and Hawkins, 2013), and the popular structure

change detection algorithm called AutoPlait (Matsubara, Sakurai, and Faloutsos, 2014).

The vertical red shadows in Figure 2 are the manually labeled change point locations based

on the observed wind turbine blade failure times. Although these labels may not include all

change points, they may serve as the basis for the comparison among different methods. A

method would be considered the best if the detected change points constitute the smallest

set that contains all the labels. As shown in Figure 2, none of the existing methods under

consideration provides satisfactory results: ECP tends to select a large number of spurious

change points, while DPMLE and AutoPlait miss almost all the change points.

This phenomenon motivates us to propose a novel algorithm based on a Bayesian hierar-

chical model (BHM) to detect mean shifts among multiple sequences. The BHM naturally

borrows information across multiple sequences by using a prior induced from the Poisson–

Dirichlet process, and hence it can identify true change points more effectively. In addition,

BHM utilizes the nonlocal priors to control the false discoveries, which is shown to yield

the smallest detection error in comparison with the existing methods under consideration.

To reduce the computational burden, we introduce a initial local scan procedure in our

algorithm, and then utilize the dynamic programming (Bellman and Roth, 1969; Du et al.,

2016) to identify the change point locations by optimizing the posterior probability.

The contributions of our work are three-fold: (i) We develop a novel Bayesian method

to estimate both the number and locations of the change points in an integrative manner.

Our method is shown to outperform the competitive ones in both simulation studies and

real application to the wind turbine data. (ii) We explore the advantages of using nonlocal
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Figure 2: The detection results of three existing methods, namely ECP, DPMLE, Auto-

Plait, for the wind turbine dataset 1 with n = 8 sequences. The black dashed lines are the

estimated state shift points and the red shadows are the mI-neighbourhood of the ground

truth.
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priors in BHM for reducing the detection errors of the change points with multivariate

sequences. (iii) We establish the consistency of our BHM method, in that it can identify

the correct number and locations of change points asymptotically, providing the sample

size is sufficiently large.

The rest of the paper is organized as follows. We discuss the related work in Section

2, and provide the BHM method and its theoretical properties in Section 3 and Section 4,

respectively. In Section 5, we conduct extensive simulation studies to compare our proposal

with some existing methods. Finally, we apply the proposed method to the wind turbine

data in Section 6.

2 Related work

The wind turbine anomaly detection problem has been extensively studied (Tautz-Weinert

and Watson, 2016) under different contexts. Other than the standard SCADA system,

novel anomaly physical detectors (Muñoz et al., 2018) with higher signal-to-noise ratios

have been developed aiming at amplifying the abnormal signals of the wind turbine failure.

However, the practical use of these new physical detectors is limited due to the high cost

(Yang et al., 2013). Moreover, many anomaly detection algorithms have been developed to

capture the anomalies using the widely used SCADA system (Tautz-Weinert and Watson,

2016). Yang et al. (2013) proposed a trending method using bin averaging with output

power, wind speed or generator speed, and a quantifying criterion was introduced based on

a correlation model of historical and present data. Kim et al. (2011) applied an artificial

neural network self-organising map approach to the SCADA data, which detected the
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anomalies through clustering. Relying upon the correlation analysis and physics of the

system, high-order polynomial models were developed for the anomaly detection (Wilkinson

et al., 2014). Gray and Watson (2010) introduced a damage model based on a physical

understanding of the particular failure mode of interest for damage calculation as well as

failure probability estimation. However, all the aforementioned methods rely on additional

knowledge about other wind turbine features, historical data or domain experience, which

are not available in the current wind turbine dataset. This motivates us to develop a new

change point detection algorithm to identify anomalies solely based on the signal patterns.

Change point detection algorithms have been widely used to detect anomalies (Muggeo

and Adelfio, 2010). Under the frequentist framework, the change point detection relies on

optimizing certain objective functions, such as a parametric or nonparametric log-likelihood

function (Hawkins, 2001; Zou et al., 2014), quadratic loss (Rigaill, 2015) and cumulative

sums (Hinkley, 1971; Manogaran and Lopez, 2018). The Bayesian information criterion

(BIC) (Yao, 1988) and its variants (Yao and Au, 1989; Zhang and Siegmund, 2007) are

commonly used for determining the number of change points.

On the other side, the Bayesian algorithms identify the change point locations by max-

imizing the posterior distribution (Mart́ınez and Mena, 2014) or the marginal likelihood

(Du et al., 2016). The optimization routines are performed through the Markov chain

Monte Carlo (MCMC) (Barry and Hartigan, 1993; Mart́ınez and Mena, 2014) or dynamic

programming (Du et al., 2016). More recently, Hopfield’s network has been advocated for

use to identify change points (Fuentes-Garćıa et al., 2019). By considering the randomness

in the model parameters and incorporating prior distributions, Bayesian methods auto-
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matically add penalties on the number of change points (Lavielle, 2005). As a result, the

number of change points can be determined seamlessly in conjunction with their locations

(Truong et al., 2018).

Change point problems can also be considered under the context of the statistical pro-

cess control (SPC) (Qiu, 2013). The conventional methods for change point detection un-

der SPC are the Shewhart and cumulative sum charts as well as the exponential weighted

moving average (EWMA) chart (Hawkins et al., 2003). Tsiamyrtzis and Hawkins (2005) in-

troduced a dynamic model to handle the short-run process with the aim to detect the mean

shift. Using a sequential estimation technique, Zamba and Hawkins (2006) considered the

multivariate change point problem for SPC when the in-control parameters were unknown.

Using an autoregression model, Tsiamyrtzis and Hawkins (2008) worked on autocorrelated

processes with mean shift under a Bayesian EWMA method. The goal of these change

point detection methods is to detect a single change in the sequence, while they can be

adapted to identify multiple changes with an unknown number of change points.

To construct the posterior distribution or the marginal likelihood under the Bayesian

paradigm, one crucial step is to specify the prior distributions. The commonly used priors

for the mean differences include the local priors (Bertolino et al., 2000), such as normal

prior distributions (Du et al., 2016), and nonlocal priors, such as the moment prior and

inverse moment prior distributions (Johnson and Rossell, 2010). The nonlocal priors were

first proposed in the Bayesian hypothesis testing framework to improve the speed of the

accumulation of the evidence in favour of the true null model (Johnson and Rossell, 2010).

Jiang, Yin, and Dominici (2018) applied the nonlocal prior to identify the change points
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in a single sequence of data, which leads to a faster convergence rate compared with the

algorithms based on the local priors.

Because the change point detection can be regarded as a special clustering problem,

we can utilize the exchangeable random partition distribution (ERPD) (Pitman, 1995) to

construct the prior distribution of the segments. The ERPD has been widely used for

clustering problems (Lau and Green, 2007; Wade et al., 2018), which penalizes the model

complexity (Pitman, 2002) and automatically selects the number of clusters (McCullagh

and Yang, 2008). However, ERPD is not directly applicable to the change point detection,

because it does not account for the order constraints in the change point problem. Mart́ınez

and Mena (2014) proposed to use a modified ERPD, namely the exchangeable random order

distribution (EROD), as the prior distribution specifically for the change point detection,

which inherits the symmetry and automatic penalization properties of ERPD.

In addition to the mean-change detection, many other applications of change points

have been carried out. Matsubara, Sakurai, and Faloutsos (2014) proposed the Auto-

Plait method to detect the changes in the periodic sequences for identifying the structure

changes in the signals. Gharghabi et al. (2017) proposed a fast, low-cost online seman-

tic segmentation for the structure change detection in cyclic data. Bouchard and Badler

(2007) introduced a Laban movement based segmentation method for the motion data.

Gong, Medioni, and Zhao (2014) utilized the kernelized temporal cut method to recognize

action changes in the continuous monocular motion sequences.
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3 Bayesian multivariate change point detection

3.1 Probability model

Suppose there are n sequences of signals measured over time, where correlations exist both

between sequences and within sequences. Let Yik represent the strength of the ith signal at

time k, i = 1, . . . , n; k = 1, . . . , T . Define Yk = (Y1k, . . . , Ynk)
>, and Y = (Y1, . . . ,YT ) is

an n× T observation matrix and Y(a,b] = (Ya+1, . . . ,Yb) represents the matrix containing

the (a + 1)th to bth columns of Y. Let K = {κ0, . . . , κp+1} be a generic notation for a

set of p change points, with κ0 = 0 and κp+1 = T , and let K0 = {κ00, . . . , κ0,p0+1} be the

true change point set, with κ00 = 0 and κ0,p0+1 = T . In addition, let {Ns, s = 0, . . . , p} =

{(κs+1 − κs), s = 0, . . . , p} be a collection of numbers of observations between consecutive

change points.

Let Y i,κs = (κs − κs−1)−1
∑κs

k=κs−1+1 Yik, with Y i,κ0 = 0. We assume

Yik − Y i,κs − µis
ωs

∣∣K, µis, ωs ∼ π0, for k ∈ (κs, κs+1],

µis ∼ πµ(µis),

ωs ∼ πω(ωs),

(N0, . . . , Np) ∼ πk(K), (1)

where π0 is the likelihood function selected according to the data distribution. It is worth

emphasizing that we model the difference Yik − Y i,κs rather than Yik, and such a modeling

strategy allows us to better control the convergence rates by selecting suitable priors on the

mean differences. In model (1), we assume that all the sequences share the same variance

for each segment, which can help to reduce the computational burden and numerical error

9



in the optimization procedure. As shown in Table A.1, using the same variance parameter

does not undermine the performance of our algorithm. In practice, when the sequences

have very distinct variances, we may standardize the variance for each sequence before the

implementation of our detection procedure. Typically, we use a normal likelihood if the

data do not contain outliers, and use a t distribution if the data are contaminated with a

substantial amount of outliers. In practice, the existence of outliers can be determined by

the generalized extreme studentized deviate test (Rosner, 1983), as discussed in Section A.3

of the Supplementary Materials.

3.2 Prior specifications

Change point detection is closely related to a special clustering algorithm in which each

cluster only contains the neighborhood points. This motivates us to consider ERPD (Pit-

man, 1995; Gnedin and Pitman, 2006) induced from the Poisson–Dirichlet process as the

prior distribution for (N0, . . . , Np), which has been widely used in clustering problems

(Broderick et al., 2013). By choosing σ = 0 or α = 0, the Poisson–Dirichlet process re-

duces to the Dirichlet or the normalized stable processes, respectively (Mart́ınez and Mena,

2014). The ERPD strikes a good balance between the generalization and complexity. As a

special case of Gibbs-type priors, it places a tradeoff on the prior distribution between be-

ing informative and noninformative about the number of change points (Lijoi et al., 2007).

However, this prior may classify non-neighborhood signals into the same group, and hence

the resulting clusters would contradict with the property of the change points. To account
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for this neighborhood constraint, the probability mass function of ERPD is modified as

πk(K) =
T !

(p+ 1)!
∏p

h=0Nh!
·
∏p

s=1(α + sσ)∏T−1
j=1 (α + j)

p∏

h=0

Nh−1∏

i=1

(i− σ), σ ∈ [0, 1), α > −σ, (2)

which corresponds to the probability mass function of EROD (Pitman, 2002; Mart́ınez and

Mena, 2014). The first term in (2) accounts for the neighborhood constraint.

Under the prior distribution in (2), the marginal distribution of the number of change

points p can be derived as

Pr(p = l) =

∏l
i=1(α + iσ)

σl+1
∏n−1

i=1 (α + i)

1

(l + 1)!

l+1∑

j=0

(−1)j
(
l + 1

j

) n−1∏

i=0

(−jσ + i).

We can select the values of (α, σ) via encoding our prior brief in the number of change

points for the data. As discussed in Mart́ınez and Mena (2014), the parameter σ plays a

more important role for detecting the change points, and thus it deserves more attention

in practice.

The prior for the mean difference, πµ, is critical for reducing the detection error of the

change points. We consider the local prior, nonlocal moment prior and inverse moment

prior, respectively defined as follows:

πµ,L(µ) = N(0, ψ2),

πµ,M(µ) =
µ2v

CM

1√
2π

exp(−µ2/2),

πµ,I(µ) =
rφq/2

Γ(q/2r)
|µ|−(q+1) exp{−(µ2/φ)−r},

where v ≥ 1, ψ, r, q, φ > 0 and CM is the normalizing constant. For the nuisance parameters

ωs, we take πω(ωs) to be a Gamma distribution.
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3.3 Posterior distribution and change point detection

Based on model (1), the marginal likelihood given a change point set K can be written as

Pr(Y|K) =

p∏

s=0

∫ n∏

i=1

∫ ∏

k∈(κs,κs+1]

1

ωs
π0

(
Yik − Y i,κs − µis

ωs

)
πµ(µis)dµisπω(ωs)dωs. (3)

Using the prior in (2), the posterior probability of K is

Pr(K|Y) ∝ Pr(Y|K)πk(K). (4)

The standard procedure to optimize the posterior is through dynamic programming (Bell-

man and Roth, 1969; Du et al., 2016). However, because the dynamic programming evalu-

ates the signals at every time point, the computation time grows in the order of O(MT 2)

where M is the upper bound of the number of change points (Rigaill, 2015; Du et al., 2016).

When T is large, the computational burden is prohibitive. To alleviate the computational

burden, we propose a screening procedure to reduce the search space of the change points.

While we adopt a Bayesian mechanism for change point detection, it is not a fully

Bayesian approach. The prior is used to induce penalties on the parameters so as to identify

the best set of change points. More specifically, by using a prior on K, the algorithm induces

a penalty on the locations and number of change points. Hence, optimizing the posterior

distribution of K automatically provides the best estimates for the locations and number

of change points. Furthermore, the prior on the mean difference induces a penalty on µis,

which reduces the false positive rate of detection.
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3.4 Screening candidate points

Through the screening step, we can reduce the search space of the change points to a

subset of time points which is guaranteed to cover the true change points asymptotically.

This leads to a substantial reduction in the computational time when there are much fewer

candidate points than the total measurement times in the data.

Let Y ik = m−1I
∑k

l=k−mI+1 Yil, where mI is a prespecified window size and the mI-

neighborhood is defined as the set {Yl : l ∈ (k −mI , k + mI)}. We construct a local scan

statistic,

Rk =
n∏

i=1

∫ ∏k+mI

l=k+1 exp{−(Yil − Y ik − µ)2}πµ(µ)dµ
∏k+mI

l=k+1 exp{−(Yil − Y ik)2}
. (5)

A large value of Rk favors the kth signal vector to be the only change point in its mI-

neighborhood. Thus, Rk → ∞ if k is a true change point, and Rk → 0 if there is no

change point in the mI-neighborhood of the kth signal. Based on this property, we develop

Algorithm 1 for selecting the candidate points.

Algorithm 1 Screening Candidate Points

(i) For each k ∈ [mI , T −mI ], compute Rk.

(ii) If Rk = max{Rj, j ∈ (k −mI , k +mI)}, then k is selected as a candidate point.

3.5 Change point detection with candidate points

Let H(mI) = {τ0, . . . , τN+1} be the set containing the candidate points where {τi}Ni=1 are

obtained by Algorithm 1 and τ0 = 0 and τN+1 = T . Given K, we can define the utility
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function, U(K|Y) =
∏p

s=0 u(Y(κs,κs+1], s), where

u(Y(κs,κs+1], s) =

∫ n∏

i=1

∫ ∏

k∈(κs,κs+1]

1

ωs
π0

(
Yik − Y iκs − µis

ωs

)
πµ(µis)dµisπω(ωs)dωs

×(α + sσ)

(s+ 1)

∏Ns−1
i=1 (i− σ)

Ns!
, (6)

and u(Y(κs,κs+1], s) can be regarded as the utility function for segment Y(κs,κs+1].

The estimator for the set of change points is given by

K̂ = argmaxK⊆H(mI)
U(K|Y).

To optimize U(K|Y) over H(mI) via dynamic programming, we require that u(Y(κs,κs+1], s)

only depends on {κs, κs+1, s} given H(mI), so we replace Y i,κs in (6) by Ỹi,κs = (τl −

τl−1)−1
∑

k∈(τl−1,τl]
Yik with τl = κs, κs ∈ K. Note that Ỹi,κs is the sample mean of the

segment (τl−1, τl], while Y i,κs is the sample mean of the segment (κs−1, κs]. Both are

consistent estimators of the mean of signals in the segment (κs−1, κs]. The dynamic pro-

gramming procedure is presented as Algorithm A.1 in the Supplementary Materials, which

has computational time O(MN2), in comparison with O(MT 2) of the existing algorithms

(Rigaill, 2015; Du et al., 2016).

4 Theoretical Properties

In this section, we present the theoretical properties of the BHM method. Lemma 1 below

shows that H(mI) covers K0 with probability one.

Lemma 1. Suppose that regularity conditions (1)–(2) in Section C of the Supplementary

Materials hold. Let η2is be the variance of Yik in the sth segment based on the true change
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points. Assume m
1/2
I δI/η → ∞ where η = max{i=1,...,n;s=0,...,p0} ηis, δI is defined in condi-

tion (2) and mI/(log(T ))1+ε → c > 0 for ε > 0. If min{i=0,...,p0}(κ0,i+1 − κ0,i) > mI , then

for each κ0j ∈ K0, there is a τ ∈ H(mI), such that Pr{κ0j ∈ (τ − mI , τ + mI)} → 1 as

T →∞.

The proof of Lemma 1 is given in Section C of the Supplementary Materials. The

condition mI/(log(T ))1+ε → c > 0 regulates the selection of mI , which grows no slower

than log(T ). Lemma 1 indicates that H(mI) should cover K0 asymptotically, while the

cardinality of H(mI), N + 2, is far less than T . Therefore, when performing the dynamic

programming on the smaller set H(mI), the algorithm guarantees a positive probability to

select the true change points and at the same time improves the computational efficiency.

Furthermore, Theorem 1 shows that the screening step would accelerate the computa-

tional speed without sacrificing the statistical consistency. Let K0 = {κ01, . . . , κ0p0} be the

true set of change points with min{i=0,...,p0}(κ0,i+1 − κ0,i) > mI , and let K̂ = {κ̂1, . . . , κ̂p̂}

be the estimated set of change points.

Theorem 1. Suppose that regularity conditions (1)–(4) in Section C of the Supplementary

Materials hold. Assume m
1/2
I δI/η → ∞ and mI/(log(T ))1+ε → c > 0 for ε > 0, and K0 is

a subset of H(mI). Then, as T →∞,

p̂
P−→ p0 and sup

b∈K0

inf
a∈K̂
|a− b| = Op (1) .

The proof of Theorem 1 is delineated in Section C of the Supplementary Materials.

Theorem 1 establishes the consistency of the estimated change points when H(mI) covers

K0. Combined with the result in Lemma 1 that each true change point falls in the mI-
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neighborhood of at least one candidate point, we have

p̂
P−→ p0 and sup

b∈K0

inf
a∈K̂
|a− b| = Op (mI) .

Hence, Lemma 1 and Theorem 1 imply that as T → ∞, the estimated change points are

guaranteed to fall in the mI-neighborhood of the true change points.

5 Simulation Studies

5.1 Simulation settings

We conduct simulation experiments to evaluate the properties of the BHM method in com-

parison with two existing methods. First, we introduce the two main assessment metrics:

the over-segmentation error,

d(K̂|K0) = sup
b∈K0

inf
a∈K̂
|a− b|,

and the under-segmentation error,

d(K0|K̂) = sup
b∈K̂

inf
a∈K0

|a− b|.

The over- or under-segmentation errors would be larger if we select fewer or more change

points than the truth, respectively. The maximum segmentation error is max{d(K̂|K0), d(K0|K̂)},

and the estimation error for p0 is |p̂− p0|.

The locations of change points are K0 = {bT × ric}p0i=1, with p0 = 10 and

{ri}10i=1 = {0.025, 0.155, 0.220, 0.365, 0.395, 0.495, 0.630, 0.725, 0.865, 0.975}.
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We adopt n = 2 for parameter tuning and n = 8 for comparing the BHM method with

other methods. We define

g(i, k) =

[{1 + sgn(k − κ0j)}(1− I{j∈Ai})

2
, j = 1, . . . , p0

]>
, i = 1, . . . , n; k = 1, . . . , T,

where Ai = {(3l+i) mod p0, l = 0, 1, 2}, sgn(·) is the sign function and I{·} is the indicator

function.

The data are generated with different dimensions from the base model,

Yik = 2 + d>g(i, k) + ξik

1>p0g(i,k)∏

j=1

vj, i = 1, . . . , n; k = 1, . . . , T, (7)

where d = (2.5,−2.8, 2.4, 2.6,−3,−2.9, 3.1,−2.5,−2.7, 2.6)> are the mean differences be-

tween consecutive segments, 1p0 is a p0-dimensional vector of 1’s, ξik’s represent the errors

and [vj]
p0
j=1 controls the homogeneity of the variances for different segments. If [vj]

p0
j=1 = 1p0 ,

the model yields a homogeneous variance across the segments.

By selecting distinct [vj]
p0
j=1 and different error distributions, we can obtain different

data-generating models. The models used in the simulation studies are summarized as

follows,

I : [vj]
p0
j=1 = 1p0 and independent standard normal errors.

II : [vj]
p0
j=1 = (0.6, 2, 2/3, 0.6, 2, 2/3, 0.6, 2, 2/3, 0.6) and independent standard normal

errors.

III : [vj]
p0
j=1 = 1p0 and independent t(5) errors with unit variance.

IV : [vj]
p0
j=1 = 1p0 and independent skewed normal errors with slant parameter 4 and

variance 1 (O’Hagan and Leonard, 1976).
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Figure 3: The mean of the simulated data (top) and randomly generated data under model

I (bottom) with sample size T = 400 and n = 8. The vertical dashed lines indicate the

true change points.
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V : [vj]
p0
j=1 = 1p0 and autocorrelated standard normal errors under a moving average

(MA) model, ξik = ak − 1.5ak−1 with ak ∼ N(0, 4/13).

VI : [vj]
p0
j=1 = 1p0 and standard normal errors with correlated sequences of correlation

coefficient 0.3.

The top panel of Figure 3 presents the mean of the simulated data under the base

model (7) with T = 400 and n = 8. At some change points, the mean shifts only happen

in certain sequences while the rest keep unchanged. For illustration, we also display the

simulated sequences under model I in the bottom panel of Figure 3.

We choose α = 1, σ = 0.3 in the prior πk, as they yield the smallest maximal segmenta-

tion errors under models I and II as shown in Figure A.1 of the Supplementary Materials.

We choose πω to be Gamma(1, 1).

5.2 Tuning parameters

We use the simulation to find a suitable window size mI for our method. Lemma 1 indicates

that mI should grow no slower than log(T ). Hence, we select mI = {log (T )}1.5 h, where

h is a constant to be determined numerically. Figure 4 exhibits the relationship between

h and |p̂ − p0|, and that between h and the maximum segmentation error under models I

and II with T = 400 and n = 2, respectively. Clearly, h = 0.55 leads to the overall smallest

errors for both models. In general, BHM works well for h ∈ [0.5, 0.6].

We also compare the performances of using different priors for the mean difference under

model I, including the normal prior (πµ,L) with ψ = 2, moment prior (πµ,M) with v = 1

and inverse moment prior (πµ,I) with q = φ = 2 and r = 0.6. For fair comparisons, we
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Figure 4: The absolute difference |p̂ − p0| (left) and the maximum segmentation error

(right) versus h over 500 simulations with sample size T = 400, n = 2 under models I and

II, respectively.

select the best tuning parameters for each prior, so as to achieve the lowest segmentation

error under model I, as shown in Figure A.2.

Figure A.3 shows the simulation results under model I with n = 2, where both |p̂− p0|

and the maximum segmentation error decrease as the sample size increases. Further, the

two nonlocal priors have similar performances and both outperform the local prior by

yielding smaller errors, especially when the sample size is larger than 350.
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Table 1: Comparison of BHM-FIX, BHM-MPP, ECP and DPMLE when n = 8 under

the six data-generating models over 500 simulations. Standard deviations are given in

parentheses.

Data-generating p̂− p0 Segmentation Error

Model Method ≤ −3 −2 −1 0 1 2 ≥ 3 d(K̂|K0) d(K0|K̂)

I BHM-FIX 0 0 0 500 0 0 0 0.14 (0.38) 0.14 (0.38)

BHM-MPP 0 0 0 500 0 0 0 0.08 (0.29) 0.08 (0.29)

ECP 0 0 0 471 26 3 0 0.18 (0.43) 1.10 (4.11)

DPMLE 500 0 0 0 0 0 0 78.32 (20.14) 0.08 (0.32)

II BHM-FIX 0 0 0 500 0 0 0 0.05 (0.23) 0.05 (0.23)

BHM-MPP 0 0 0 500 0 0 0 0.02 (0.15) 0.02 (0.13)

ECP 0 0 0 477 21 2 0 0.08 (0.29) 0.12 (0.35)

DPMLE 499 1 0 0 0 0 0 52.14 (1.97) 3.85 (0.36)

III BHM-FIX 0 0 0 500 0 0 0 0.17 (0.40) 0.17 (0.40)

BHM-MPP 0 0 0 500 0 0 0 0.11 (0.32) 0.11 (0.32)

ECP 0 0 0 469 28 3 0 0.20 (0.45) 1.20 (4.41)

DPMLE 500 0 0 0 0 0 0 72.02 (21.76) 0.12 (0.37)

IV BHM-FIX 0 0 0 500 0 0 0 0.10 (0.31) 0.11 (0.34)

BHM-MPP 0 0 0 500 0 0 0 0.10 (0.31) 0.09 (0.30)

ECP 0 0 0 474 22 4 0 0.15 (0.40) 0.20 (0.45)

DPMLE 500 0 0 0 0 0 0 75.60 (21.87) 5.80 (0.51)

V BHM-FIX 0 0 0 500 0 0 0 0.10 (0.32) 0.11 (0.32)

BHM-MPP 0 0 0 500 0 0 0 0.10 (0.27) 0.08 (0.27)

ECP 0 0 0 500 0 0 0 0.15 (0.38) 0.17 (0.38)

DPMLE 500 0 0 0 0 0 0 73.56 (21.39) 0.07 (0.26)

VI BHM-FIX 0 0 0 486 14 0 0 1.02 (1.65) 1.60 (3.86)

BHM-MPP 0 0 0 488 12 0 0 0.67 (0.83) 1.04 (2.57)

ECP 0 0 0 476 20 4 0 0.45 (0.64) 1.25 (3.86)

DPMLE 500 0 0 0 0 0 0 77.70 (22.67) 0.10 (0.31)
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5.3 Comparison with other methods

We compare BHM with the ECP and DPMLE mean-change detection methods under all

the six data-generating models with sample size T = 400 and n = 8. For the ECP and

DPMLE methods, we adopt the default parameters from the original papers, respectively.

The BHM method utilises a normal likelihood for all models except for model III where

a t-distribution likelihood is used. The moment prior πµ,M is chosen for mean differ-

ences according to the results in Figure A.3. We adopt two methods to select parameters

(α, σ, v, h), as they are essential for BHM. (i) We set (α, σ, v, h) = (1, 0.3, 1, 0.55) as they

deliver satisfactory performances in the simulation studies (denoted as BHM-FIX). (ii) We

tune parameters (α, σ, v, h) to maximize the posterior probability Pr(K|Y) (denoted as

BHM-MPP). Table 1 shows the results for n = 8 under the six models. The BHM-MPP

consistently outperforms BHM-FIX under all the six models, indicating that maximization

of the posterior probability is a more effective method to select hyper-parameters for the

BHM method in practice. Nevertheless, the performance of BHM-FIX is only slightly infe-

rior to that of BHM-MPP under all six settings, suggesting that the selected parameters in

Section 5.2 achieve high estimation accuracy with small |p̂ − p0| and segmentation errors.

In practice, (v, h) = (1, 0.55) can be set as the default parameters while the values of (α, σ)

should be selected via the prior belief on the number of change points or the MPP method,

as they rely on the number and locations of change points.

Overall, the proposed BHM-FIX and BHM-MPP are superior to other methods by

yielding the smallest |p̂ − p0| and segmentation errors under all the six models. Although

incorrect models are adopted under models IV, V and VI, the BHM-FIX and BHM-MPP
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still perform better than the competitive methods due to the robustness property.

6 Wind turbine data

For illustration, we apply our BHM method to detect the changes in the wind turbine data

available from a wind turbine anomaly detection contest. For the details of the contest,

refer to the link (http://www.caict.ac.cn/kxyj/qwfb/bps/201804/t20180426 158519.htm).

It includes a total of seven datasets which are manually labeled for the wind turbine failure

times serving as the ground truth. Each dataset contains eight sequences (n = 8), corre-

sponding to wind speed, cabin temperature, environment temperature, accelerated speed

along horizontal and vertical directions and the ng5 temperatures from three pitches. In

each dataset, there are 4 to 8 change points, i.e., p0 ∈ [4, 8] in the sequences. The lengths

of the sequences are from 400 to 1000, i.e., T ∈ [400, 1000]. Under the moment prior, we

choose (α, σ, v, h) to yield the largest posterior probability Pr(K|Y) under the BHM-MPP.

We first utilize an outlier detection method introduced in Section A.3 of the Supplementary

Materials to evaluate the data distribution. As there are significant amount of outliers in

the data and thus the normal likelihood may not fit the data well, we adopt the t distribu-

tion to construct the likelihood in the BHM method. For comparison, we also implement

other mean-change point detection methods, including ECP and DPMLE, and the popular

pattern detection method called AutoPlait (Matsubara, Sakurai, and Faloutsos, 2014).

We use three metrics to compare different methods, while considering an estimator

within (or outside) the mI-neighbourhood of a true change point as a true positive (or false

positive) detection.
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Table 2: The running times based on Intel core i7-7700K CPU and detection results of

BHM-MPP, ECP, DPMLE and AutoPlait on seven wind turbine datasets, and the overall

results are the average of those for the seven datasets.

Metrics BHM-MPP ECP DPMLE AutoPlait BHM-MPP ECP DPMLE AutoPlait

Dataset 1 Dataset 2

Time (s) 161.1 21.9 435.2 2.8 32.9 6.3 58.6 1.2

Precision 0.625 0.316 0 0 0.500 0.300 0 1.000

Recall 0.833 1.000 0 0 0.750 0.750 0 0.250

F1 score 0.715 0.480 0 0 0.600 0.429 0 0.400

Dataset 3 Dataset 4

Time (s) 31.2 5.2 58.6 2.2 28.2 7.2 58.7 1.8

Precision 0.429 0.300 0.444 1.000 0.333 0.214 0 0

Recall 0.750 0.750 1.000 0.250 0.750 0.750 0 0

F1 score 0.545 0.429 0.615 0.400 0.462 0.333 0 0

Dataset 5 Dataset 6

Time (s) 70.3 13.3 156.2 2.8 30.3 5.8 58.8 2.6

Precision 0.375 0.176 0 0 0.875 0.667 0.727 0

Recall 0.750 0.750 0 0 0.875 1.000 1.000 0

F1 score 0.500 0.286 0 0 0.875 0.800 0.842 0

Dataset 7 Overall

Time (s) 15.8 2.0 13.0 1.4 52.8 8.8 119.9 2.1

Precision 0.429 0.375 0.429 0 0.509 0.322 0.441 0.500

Recall 0.750 0.750 0.750 0 0.794 0.853 0.441 0.059

F1 score 0.545 0.500 0.545 0 0.620 0.468 0.441 0.105

1. Precision (P): proportion of the estimated change points that are true change points.

If the method yields no estimated change point, the precision is defined as 0.

2. Recall (R): proportion of true change points detected by an algorithm.

3. F1 score: F1 = 2RP/(R + P). When R = P = 0, the F1 score is defined as 0.

Table 2 shows the results from the BHM-MPP, ECP, DPMLE, AutoPlait methods on
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Figure 5: Detection results of the BHM-MPP method for the wind turbine dataset 1 with

n = 8 sequences. The black dashed lines are the estimated state shift points and the red

shadows are the mI-neighbourhood of the ground truth.

the seven datasets. Among the four methods, BHM-MPP yields the best performance in

five out of seven datasets (i.e., datasets 1, 2, 4, 5, 6) in terms of the F1 score. ECP yields a

competitive recall but a much lower precision; DPMLE does not provide satisfactory pre-

cision or recall, especially for datasets 1, 2, 4, 5, where the algorithm misses all the change

points; AutoPlait barely captures any true change points in all the datasets. Figure 5

shows the eight data sequences of the wind turbine dataset 1 and the detection results

using the BHM-MPP method. Compared with the results of other methods in Figure 2,

the BHM-MPP method clearly yields the best performance.

We also report the running time of the four methods for each dataset based on Intel

core i7-7700k CPU in Table 2. While the AutoPlait leads to unsatisfactory performance,

it consumes the shortest running time. Among the three mean-change detection meth-

ods, the nonparametric ECP is fastest. Due to the dynamic programming procedure, the

computational burden of the BHM and DMPLE is relatively heavier, requiring longer com-
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putational time compared to the other two methods. However, it is worth noting that all

AutoPlait, ECP and DPMLE are implemented with C/C++ languages while our BHM

method is implemented with the R language.

7 Conclusion

Motivated by the wind turbine data, we propose a BHM-based algorithm to detect mean

changes for multivariate data sequences. Our method borrows the information across dif-

ferent sequences using the exchangeable random order prior. Further, BHM reduces the

detection errors by applying the nonlocal priors to the mean difference. It also eases the

computational burden by employing an initial screening stage for selecting the candidate

points. We show the asymptotic consistency of the proposed method from both theoretical

and numerical perspectives. As an illustration, we apply the BHM method to detect the

anomalies in the wind turbine data where the BHM method shows robust outcomes and

yields the best performance in most of the datasets in terms of the F1 score compared with

other competitive methods considered in the paper.

Supplementary Materials

Supplementary Materials: PDF file containing additional simulation results, the dy-

namic programming algorithm as well as the proofs of Lemma 1 and Theorem 1.

RCode and data: Zip file containing the R code for implementing the BHM method as

well as the real data used in the article in RData form.

26



References

Barry, D. and Hartigan, J. A. (1993), “A Bayesian analysis for change point problems,”

Journal of the American Statistical Association, 88, 309–319. 6

Bellman, R. and Roth, R. (1969), “Curve fitting by segmented straight lines,” Journal of

the American Statistical Association, 64, 1079–1084. 3, 12

Bertolino, F., Racugno, W., and Moreno, E. (2000), “Bayesian model selection approach

to analysis of variance under heteroscedasticity,” Journal of the Royal Statistical Society:

Series D (The Statistician), 49, 495–502. 7

Bouchard, D. and Badler, N. (2007), “Semantic segmentation of motion capture using laban

movement analysis,” in International Workshop on Intelligent Virtual Agents , Springer.

8

Broderick, T., Jordan, M. I., and Pitman, J. (2013), “Cluster and Feature Modeling from

Combinatorial Stochastic Processes,” Statistical Science, 28, 289–312. 10

Du, C., Kao, C. L. M., and Kou, S. C. (2016), “Stepwise Signal Extraction via Marginal

Likelihood,” Journal of the American Statistical Association, 111, 314–330. 3, 6, 7, 12,

14
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A Additional numerical results

A.1 Variance parameter

We assess the impact of using the same ωs across the sequences in our BHM model. We
generate two-dimensional data from model I (homogeneous errors) and model II (het-
eroscedastic errors). Under each model, the data are generated with the same (N2(0, I2))
and distinct (N2(0,Σ)) variance parameters across the sequences, where I2 is an identity
covariance matrix and Σ = diag(0.8, 1.2). We estimate the change point locations by as-
suming the two sequences share the same variance or use different variance parameters.
The results in Table A.1 show that the two strategies yield similar performances across all
scenarios. Hence, we suggest to use the same ωs in practice which helps to reduce the com-
putational burden and numerical errors as well as facilitating the information borrowing
across the sequences.

Table A.1: Comparison results over 500 simulations when using the same or different vari-
ance parameters across the sequences with n = 2 under model I and model II, respectively.
Standard deviations are given in parentheses.

Data-generating Variance p̂− p0 Segmentation Error

Model Parameter ≤ −3 −2 −1 0 1 2 ≥ 3 d(K̂|K0) d(K0|K̂)
I, (ξ1k, ξ2k) ∼ N2(0, I2) Same 0 0 18 477 5 0 0 2.56 (2.83) 2.59 (3.86)

Different 0 0 25 473 2 0 0 2.56 (2.83) 2.26 (2.92)
I, (ξ1k, ξ2k) ∼ N2(0,Σ) Same 0 0 23 474 3 0 0 2.62 (2.91) 2.43 (3.42)

Different 0 0 25 472 3 0 0 2.62 (2.91) 2.36 (3.21)
II, (ξ1k, ξ2k) ∼ N2(0, I2) Same 0 0 3 341 135 21 0 1.23 (1.59) 6.32 (7.83)

Different 0 0 3 345 137 14 0 1.23 (1.59) 6.27 (7.88)
II, (ξ1k, ξ2k) ∼ N2(0,Σ) Same 0 0 19 479 2 0 0 2.28 (2.74) 2.03 (2.82)

Different 0 0 19 453 28 0 0 2.28 (2.74) 2.73 (4.07)
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A.2 Parameter tuning in the priors of BHM

Figure A.1: The maximum segmentation error versus α (left) and σ (right) over 500 simu-
lations with sample size T = 400, n = 2 under models I and II, respectively.

Figure A.2: The maximum segmentation errors versus the corresponding parameters for
the inverse moment prior (left), moment prior (middle) and local prior (right) over 500
simulations with sample size T = 400, n = 2 under model I.
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Figure A.3: The absolute difference |p̂ − p0| (left) and the maximum segmentation error
(right) versus T over 500 simulations under three priors: the nonlocal inverse moment prior
πµ,I with r = 0.6, φ = q = 2, nonlocal moment prior πµ,M with v = 1 and local prior πµ,L
with ψ = 2 under model I with n = 2.
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A.3 Determination of outliers

In the real data application, we determine the existence of the outliers as follows,

(1) Select a candidate point set H(mI) for the dataset with the screening algorithm in
the BHM method.

(2) Divide the dataset into segments based on the candidate point set and in this case,
we can assume the data points in each segment has homogeneous distribution.

(3) Conduct the generalized extreme studentized deviate (ESD) test (Rosner, 1983) for
each segment.

(4) If more than 12% of the segments contain outliers, we adopt the t likelihood; otherwise
a normal likelihood is adopted.

In our experiments, this procedure works well as shown in Figure A.4.

Figure A.4: The densities of proportions of segments containing outliers under model I
(normal error) and model III (t error). The black dotted line indicates 12%.

A.4 Autocorrelation in the wind turbine data

While we have shown robustness of the BHM method for the moving-average error (refer
to model V of Table ??), we also check the autocorrelation function (ACF) of the real data
and simulate the datasets with ACF similar to the real data. The ACFs of dataset 1 in the
wind turbine data are shown in Figure A.5. From the plots, it is clear that for the wind
turbine data, the first three sequences show significant autocorrelation while the other five
sequences are not significantly autocorrelated.
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Thus, we conduct the simulation studies with a mixed error model where the first three
sequences of the simulated dataset are with autoregressive (AR) errors while the other
five sequences follows model I in Section ??. Specifically, we adopt the AR(2) model,
i.e., ξik = 0.5ξi,k−1 + 0.2ξi,k−2 + ak with ak ∼ N(0, 3/5). The ACFs of the simulated
dataset are shown in Figure A.6 which has similar patterns to Figure A.5. We use an
independent normal likelihood in the BHM method and repeat the simulation for 500
times and the results are presented in Table A.2. Based on the results, the BHM-FIX
and BHM-MPP methods still yield satisfactory results under the mixed error datasets.
However, the nonparameteric ECP method deteriorates dramatically compared with the
results in Table ??.

Table A.2: Comparison results over 500 simulations among BHM-FIX, BHM-MPP, ECP
and DPMLE when n = 8 under the mixed error model. Standard deviations are given in
parentheses.

Data-generating p̂− p0 Segmentation Error
Model Method ≤ −3 −2 −1 0 1 2 ≥ 3 d(K̂|K0) d(K0|K̂)
Mixed errors BHM-FIX 0 0 0 486 14 0 0 0.08 (0.31) 0.54 (2.80)

BHM-MPP 0 0 0 484 16 0 0 0.03 (0.18) 0.52 (2.77)
ECP 0 0 0 24 49 101 326 0.22 (0.53) 20.34 (6.59)
DPMLE 500 0 0 0 0 0 0 59.79 (15.64) 0.12 (1.23)
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Figure A.5: The autocorrelation functions of dataset 1 in the wind turbine data.
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Figure A.6: The autocorrelation functions of the simulated data.
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B Dynamic programming

For l = 0, 1, . . . , N , we define

H(j|l) ≡ max
K⊆{τ0,τ1,...,τj ,τj+1},|K|=l

U(K|Y(τ0,τj+1]).

The dynamic programming algorithm is given as Algorithm A.1.

Algorithm A.1 Dynamic programming
Input:

The upper bound of the number of change points M , dataset Y, candidate point set
H(mI).

1: Let A be an empty M ×N matrix.
2: for i = 0, . . . , N do
3: H(i|0)← u(Y(τ0,τi+1], s = 0)
4: end for
5: for l = 1, . . . ,M do
6: for i = l, . . . , N do
7: Al,i ← argmaxl−1≤k≤i−1{H(k|l − 1)u(Y(τk+1,τi+1], s = l)}
8: H(i|l)← maxl−1≤k≤i−1{H(k|l − 1)u(Y(τk+1,τi+1], s = l)}
9: end for

10: end for
11: p̂← argmaxl=0,1,...,MH(N |l)
12: if p̂ = 0 then
13: return ∅
14: else
15: s← p̂
16: t← N
17: E ← ∅
18: while s 6= 0 do
19: E ← E ∪ {As,t + 1}
20: s← s− 1
21: t← As,t
22: end while
23: return K̂ = {τi, i ∈ E}
24: end if
Output:

Estimated change point set K̂.
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C Proofs

We denote K0 as the true change point set with p0 change points, K̂ as the estimated
change point set with p̂ estimated change points. The mI-neighbourhood of a time point
Yk is defined as {Yl : l ∈ (k − mI , k + mI)}. Given an interval Y(a,b], we denote
p(a,b](θ) =

∏
k∈(a,b] f(Yk|θ) as the likelihood function, the corresponding log-likelihood

function is l(a,b](θ) = logp(a,b](θ). We also let θ̂(a,b] be the maximum likelihood esti-
mator (MLE) based on l(a,b](θ), and θ(a,b] be the true parameters on (a, b]. We denote

σ̂2
(a,b] = {−E(

∂2l(a,b](θ)

∂θ∂θ> )
∣∣
θ=θ̂(a,b]

}−1 and let J(θ0) = −E ∂2logf(Y1|θ)

∂θ∂θ>

∣∣
θ=θ0

be the Fisher infor-

mation for one observation. We also define d as the dimension of θ. Finally, denote

C(Y(κs,κs+1]) =

∫
p(κs,κs+1](θs)π(θs)dθs.

We list the regularity conditions as follows.

(1) The prior for mean difference πµ(µ) is continuous with bounded first and second
derivatives.

(2) For a segment between two true change points κ0j and κ0,j+1 (j = 1, . . . , p0) with
parameters (µ1,j, . . . , µn,j), there exists δI > 0 such that for any i ∈ {1, . . . , n}, |µi,j|
is either greater than δI or equal to 0. Further, there is i ∈ {1, . . . , n} such that
|µi,j| > δI .

(3) The generic prior π(θ) is continuous and positive at all θi (i = 0, . . . , p0), where θi is
the true parameters for interval (κ0i, κ0,i+1].

(4) The regularity conditions (A1)–(A5) and (B1)–(B4).

Regularity conditions (A1)–(A5) and (B1)–(B4) are listed as follows. All the conditions
are multivariate extensions from (Du et al., 2016).

(A1) Θ is a closed set, and Θ ⊆ Rd.

(A2) The set of points {x : f(x|θ) > 0} is independent of θ. We denote this set by X .

(A3) If θ1, θ2 are two distinct points in Θ, then the Lebesgue measure of µ{x : f(x|θ1) 6=
f(x|θ2)} > 0.

(A4) Let x ∈ X , θ′ ∈ Θ. Then for all θ such that ‖θ−θ′‖ < δ, where ‖ · ‖ is the L2 norm,
with δ sufficiently small,

|logf(x|θ)− logf(x|θ′)| < Hδ(x,θ
′),

where

lim
δ→0

Hδ(x,θ
′) = 0,

and for any θ0 ∈ Θ,

lim
δ→0

∫

X
Hδ(x,θ

′)f(x|θ0)dµ = 0.
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(A5) If Θ is not bounded, then for any θ0 ∈ Θ, and sufficiently large ∆,

logf(x|θ)− logf(x|θ0) < K∆(x,θ0),

whenever ‖θ‖ > ∆, where

lim
∆→∞

∫

X
K∆(x,θ0)f(x|θ0)dµ < 0.

(B1) logf(x|θ) is twice differentiable with respect to θ in some neighborhood of θ0.

(B2) Let

J(θ0) =

[∫

X
f0
∂logf0

∂θ0i

∂logf0

∂θ0j

dµ

]d

i,j=1

,

where f0 denotes f(x|θ0), θ0i is the ith element of θ0. Then J(θ0) is positive definite.

(B3) For any 1 ≤ i, j ≤ d,
∫

X

∂f0

∂θ0i

dµ =

∫

X

∂2f0

∂θ0i∂θ0j

dµ = 0.

(B4) For δ > 0, if ‖θ − θ0‖ < δ, where δ is small enough, then
∥∥∥∥
∂2logf(x|θ)

∂θ∂θ>
− ∂2logf(x|θ0)

∂θ∂θ>

∥∥∥∥ < Mδ(x,θ0),

where limδ→0

∫
Mδ(x,θ0)f(x|θ0)dµ = 0.

Proof of Lemma ??:
We define j as an mI-flat point if there is no change point in (j−mI , j+mI). Let F be

the set of all mI-flat points. So |F| = T − p0(2mI − 1), where |F| denotes the cardinality
of set F . To prove Lemma ??, it is sufficient to show

Pr

(
min
k∈K0

Rk > max
l∈F

Rl

)
→ 1,

as T →∞. Note that

Pr

(
min
k∈K0

Rk > max
l∈F

Rl

)
≥ Pr

(
min
k∈K0

Rk > bT > max
l∈F

Rt

)
,

where bT is a positive sequence with respect to T . It follows that

Pr

(
min
k∈K0

Rk > bT > max
l∈F

Rl

)

= Pr {(∩k∈K0{Rk > bT}) ∩ (∩l∈F{Rl < bT})}
= 1− Pr {(∪k∈K0{Rk ≤ bT}) ∪ (∪l∈F{Rl ≥ bT})}
≥ 1− {Pr (∪k∈K0{Rk ≤ bT}) + Pr (∪l∈F{Rl ≥ bT})}

≥ 1−
{∑

k∈K0

Pr ({Rk ≤ bT}) +
∑

l∈F
Pr ({Rl ≥ bT})

}
.
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We define

Rij =

∫ ∏j+mI

l=j+1 exp{−(Yil − Y ij − µ)2}π(µ)dµ
∏j+mI

l=j+1 exp{−(Yil − Y ij)2}
, for i = 1, . . . , n,

where Y ij = m−1
I

∑j
l=j−mI+1 Yil. Clearly, Rj =

∏n
i=1Rij.

For any change point k ∈ K0, assume nx sequences have mean shifts at this change
point. By regularity condition (2), we know nx ≥ 1 and the absolute change of mean is
greater than δI .

Without loss of generality, assume the first nx sequences have mean changes. By Lemma
1 of Jiang, Yin, and Dominici (2018), we have

lim
T→∞

Pr{Rik > exp(DmIδI)} = 1, (1)

when there is a mean shift in sequence i at change point k, where D > 0 is a constant.
Then we set

bT = exp(DδImI/2).

For any l ∈ F , by Lemmas 2, 3, 4 of Jiang, Yin, and Dominici (2018), there exist c, C > 0
such that

caT ≤ Ril ≤ CaT , (2)

so

Rl =
n∏

i=1

Ril = Op(a
n
T ),

where aT = m
−1/2
I , m

−v−1/2
I and exp(−ms/(s+1)

I ) correspond to the local prior, moment
prior and inverse moment prior. Consequently, we have

Pr(Rl ≥ bT ) = O{anT exp(−DδImI/2)},∑

l:tl∈F
Pr (Rl ≥ bT ) = O{TanT exp(−DδImI/2)} = o(1), (3)

since mI/(logT )1+ε → c > 0.
Next, for k ∈ K0, by (1), we know for i = 1, . . . , nx, we have

lim
T→∞

Pr{Rik > exp(DmIδI)} = 1.

As a result,

lim
T→∞

Pr

{
nx∏

i=1

Rik > exp(nxDmIδI)

}
= 1. (4)
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Consequently, we obtain

Pr(Rk ≤ bT )

= Pr

(
nx∏

i=1

Rik

n∏

j=nx+1

Rjk ≤ bT

)

= Pr

{
nx∏

i=1

Rik

n∏

j=nx+1

Rjk ≤ bT ,
nx∏

i=1

Rik > exp(nxDδImI)

}

+ Pr

{
nx∏

i=1

Rik

n∏

j=nx+1

Rjk ≤ bT ,
nx∏

i=1

Rik ≤ exp(nxDδImI)

}

≤ Pr

{
exp(nxDδImI)

n∏

j=nx+1

Rjk ≤ bT

}
+ Pr

{
nx∏

i=1

Rik ≤ exp(nxDδImI)

}
.

Combining with (4),

lim
T→∞

Pr(Rk ≤ bT ) ≤ lim
T→∞

Pr

{
exp(nxDmIδI)

n∏

j=nx+1

Rjk ≤ bT

}
.

For j = nx + 1, . . . , n, by (2), ∃c1, C1 > 0 such that

c1a
n−nx
T ≤

n∏

j=nx+1

Rjk ≤ C1a
n−nx
T ,

and

C−1
1 anx−n

T ≤
(

n∏

j=nx+1

Rjk

)−1

≤ c−1
1 anx−n

T .

This implies

Pr

{
exp(nxDmIδI)

n∏

j=nx+1

Rjk ≤ bT

}

= Pr





(
n∏

j=nx+1

Rjk

)−1

≥ exp(nxDmIδI)b
−1
T





≤ c−1
1 anx−n

T

exp(nxDmIδI)b
−1
T

= c−1
1 anx−n

T exp(−nxDmIδI)bT ,

where the second to the last inequality holds by the Markov inequality. Therefore

Pr (Rk ≤ bT ) = O{anx−n
T exp(−nxDmIδI)bT}.
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Thus, we obtain

∑

k∈K0

Pr (Rk ≤ bT ) = O
[
p0a

nx−n
T exp{−(nx − 1/2)DmIδI}

]
= o(1), (5)

since mI/(logT )1+ε → c > 0. Then using (3) and (5), we achieve:

Pr

(
min
k∈K0

Rk > max
l∈F

Rl

)

≥ Pr

(
min
k∈K0

Rk > bT > max
l∈F

Rl

)

= Pr {(∩k∈K0{Rk > bT}) ∩ (∩l∈F{Rl < bT})}

≥ 1−
{∑

k∈K0

Pr ({Rk ≤ bT}) +
∑

l∈F
Pr ({Rl ≥ bT})

}

= 1− o(1).

Finally, we know

Pr

(
min
k∈K0

Rk > max
l∈F

Rl

)
−→ 1,

as T →∞.

Lemma 3. Under conditions (A1)–(A5) and (B1)–(B4), if there is no change point in
the interval (a, b], and the true value of parameter within this segment is θ(a,b], then as
(b− a)→∞,

1. Let N0(δ) = {θ : ‖θ − θ(a,b]‖ < δ} be a neighborhood of θ(a,b] contained in Θ, the
parameter space, there exists a positive number kθ(a,b](δ), depending on θ(a,b] and δ,
such that

lim
(b−a)→∞

Pr

{
sup

θ/∈N0(δ)

l(a,b](θ)− l(a,b](θ(a,b])

b− a < −kθ(a,b](δ)
}

= 1;

2. l(a,b](θ(a,b])− l(a,b](θ̂(a,b]) = Op(1).

Proof:
The proof of Lemma 3 is a direct multi-dimensional extension from Theorem 1 of Walker

(1969).
The following result is Theorem 3.1 of Fraser and Mcdunnough (1984), and the reg-

ularity conditions (A1)–(A5) and (B1)–(B4) imply the three assumptions in Fraser and
Mcdunnough (1984).

Lemma 4. Suppose conditions (A1)–(A5) and (B1)–(B4) hold. For i.i.d samples {Y1, . . . ,YT}
from f(Y|θ0), let σ̂2 = {−E(

∂2logp(θ)

∂θ∂θ> )
∣∣
θ=θ̂
}−1 and p(θ) =

∏
k:tk∈(0,1] f(Yk|θ) , where θ̂ is
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the MLE of θ0. If w(θ) ≥ 0 for all θ ∈ Θ and satisfies
∫
w(θ)p(θ)dθ < ∞ and is

continuous and nonzero at the true θ0, then

det(σ̂)w(θ̂)p(θ̂)∫
w(θ)p(θ)dθ

a.s.−→ (2π)−d/2.

Lemma 5. Assume conditions in Theorem ?? hold. Suppose that there are r change points
in (a, b), say {κ1, . . . , κr}, with κ1 < . . . < κr. Further assume (κi+1−κi)→∞, i = 0, . . . , r
(let κ0 = a, κr+1 = b) as (b − a) → ∞. Then let κ = mini=0,...,r (κi+1 − κi), ∃c2 > 0 such
that

C(Y(a,b])

C(Y(a,κ1]) · · ·C(Y(κr,b])
= Op

{
(b− a)rd/2 exp(−κc2)

}
.

Proof:
The r change points separate the sequences into r + 1 segments. We first assume all

the r + 1 segments have different parameters denoted as θ1, . . . ,θr+1. Then we can find a
δ and define Ni(δ) = {θ : ‖θ − θi‖ < δ}, i = 1, . . . , r + 1 such that Ni(δ) ∩Nj(δ) = ∅ for
i 6= j. We write

C(Y(a,b]) =
r+1∑

i=0

Ii

where

Ii =

∫

Ni(δ)

p(a,b](θ)π(θ)dθ, for i = 1, . . . , r + 1,

I0 =

∫

Θ−∪r+1
i=1Ni(δ)

p(a,b](θ)π(θ)dθ.

By Lemma 4, we have

C(Y(κi−1,κi]) = p(κi−1,κi](θ̂(κi−1,κi])π(θ̂(κi−1,κi]) det(σ̂(κi−1,κi])Op(1)

6= p(κi−1,κi](θ̂(κi−1,κi])π(θ̂(κi−1,κi]) det(σ̂(κi−1,κi])op(1). (6)

where i = 1, . . . , r + 1. Note that by definition of σ̂(κi−1,κi],

det(σ̂(κi−1,κi]) = Op{(κi − κi−1)−d/2},
det(σ̂(κi−1,κi]) 6= op{(κi − κi−1)−d/2}. (7)
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By (6), for j 6= 0, we obtain

Ij
C(Y(a,κ1]) · · ·C(Y(κr,b])

=

∫
Nj(δ)

π(θ)p(κ0,κ1](θ) · · · p(κr,κr+1](θ)dθ

C(Y(a,κ1]) · · ·C(Y(κr,b])

=
Op(1)

∫
Nj(δ)

π(θ)p(κ0,κ1](θ) · · · p(κr,κr+1](θ)dθ

C(Y(κj−1,κj ])
∏

i 6=j p(κi−1,κi](θ̂(κi−1,κi])π(θ̂(κi−1,κi]) det(σ̂(κi−1,κi])

=
Op(1)

∫
Nj(δ)

π(θ)p(κ0,κ1](θ) · · · p(κr,κr+1](θ)dθ

C(Y(κj−1,κj ])
∏

i 6=j p(κi−1,κi](θi)π(θ̂(κi−1,κi]) det(σ̂(κi−1,κi])

=

∫
Nj(δ)

π(θ)p(κ0,κ1](θ) · · · p(κr,κr+1](θ)dθ

C(Y(κj−1,κj ])
∏

i 6=j p(κi−1,κi](θi)π(θ̂(κi−1,κi])Op{(κi − κi−1)−d/2}

=

∫
Nj(δ)

π(θ)p(κ0,κ1](θ) · · · p(κr,κr+1](θ)dθ

C(Y(κj−1,κj ])
∏

i 6=j p(κi−1,κi](θi)π(θi)Op{(κi − κi−1)−d/2} , (8)

where the third equality in the above equation is due to the second result of Lemma 3, the
fourth is by (7), and the last one is by the continuous mapping theorem.
Using the first result of Lemma 3, ∃k(δ) > 0 such that

∫
Nj(δ)

π(θ)p(κ0,κ1](θ) · · · p(κr,κr+1](θ)dθ

C(Y(κj−1,κj ])
∏

i 6=j p(κi−1,κi](θi)π(θi)

=
1

C(Y(κj−1,κj ])

∫

Nj(δ)

π(θ)p(κj−1,κj ](θ)
∏

i 6=j
exp{l(κi−1,κi](θ)− l(κi−1,κi](θi)}dθ

<
1

C(Y(κj−1,κj ])

∏

i 6=j
exp{−(κi − κi−1)k(δ)}

∫

Nj(δ)

p(κj−1,κj ](θ)π(θ)dθ

≤ 1

C(Y(κj−1,κj ])

∏

i 6=j
exp{−(κi − κi−1)k(δ)}

∫

Θ

p(κj−1,κj ](θ)π(θ)dθ

=
∏

i 6=j
exp{−(κi − κi−1)k(δ)} (9)

with probability tending to unit as (b− a)→∞. Combining (8) and (9), we achieve

Ij
C(Y(a,κ1]) · · ·C(Y(κr,b])

= Op

[∏

i 6=j
(κi − κi−1)d/2 exp{−(κi − κi−1)k(δ)}

]

= Op

{
(b− a)rd/2 exp(−κk(δ))

}
.

For I0, we apply the same argument, but note that the region Θ − ∪r+1
i=1Ni(δ) does not
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contain the neighborhood of any θi, so

I0

C(Y(a,κ1]) · · ·C(Y(κr,b])

would have a faster convergence rate compared with

Ij
C(Y(a,κ1]) · · ·C(Y(κr,b])

.

Thus we achieve

C(Y(a,b])

C(Y(a,κ1]) · · ·C(Y(κr,b])
=

∑r+1
i=0 Ii

C(Y(a,κ1]) · · ·C(Y(κr,b])
= Op

{
(b− a)rd/2 exp(−κk(δ))

}
.

If some segments share the same parameters, without loss of generality, we assume only
θ1 = θ3 then N1(δ) = N3(δ). The argument is analogous when more than two segments
share the same parameters.

For j 6= 1 or 3, the argument is identical to the above. When j = 1 (and there is no I3,
since θ1 = θ3), following similar discussions for (8) and (9),

I1

C(Y(a,κ1]) · · ·C(Y(κr,b])

=

∫
Nj(δ)

π(θ)p(κ0,κ1](θ) · · · p(κr,κr+1](θ)dθ

C(Y(κ0,κ1])C(Y(κ2,κ3])
∏

i 6=1,3 p(κi−1,κi](θi)π(θi)Op{(κi − κi−1)−d/2}

≤
∫

Θ
p(κ0,κ1](θ)p(κ2,κ3](θ)π(θ)dθ

C(Y(κ0,κ1])C(Y(κ2,κ3])

∏

i 6=1,3

exp{−(κi − κi−1)k(δ)}Op{(κi − κi−1)d/2}.(10)

Using similar discussion for (15),

∫
Θ
p(κ0,κ1](θ)p(κ2,κ3](θ)π(θ)dθ

C(Y(κ0,κ1])C(Y(κ2,κ3])
= Op

{
(κ3 − κ2)(κ1 − κ0)

(κ3 − κ2) + (κ1 − κ0)

}d/2
. (11)

Combining (10) and (11), we achieve

I1

C(Y(a,κ1]) · · ·C(Y(κr,b])

= Op

{ ∏r+1
i=1 (κi − κi−1)

(κ3 − κ2) + (κ1 − κ0)

}d/2

Op

[∏

i 6=1,3

exp{−(κi − κi−1)k(δ)}
]

= Op

{
(b− a)rd/2 exp(−κk(δ))

}
.

Then we obtain

C(Y(a,b])

C(Y(a,κ1]) · · ·C(Y(κr,b])
= Op

{
(b− a)rd/2 exp(−κk(δ))

}
.
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Lemma 6. Assume conditions in Theorem ?? hold, and K0 is a subset of H(mI). Let K̂
be the estimated change point set determined by our algorithm. Suppose that there exists a
true change point κ0j /∈ K̂. Let κ̂i and κ̂i+1 be the estimated change point which sandwich
κ0j, and κ̂i < κ0,j−l < . . . < κ0j < . . . < κ0,l+r < κ̂i+1, where l, r ≥ 0. Considering a new
estimated change point set

K̃ = {κ̂1, . . . , κ̂i, κ0,j−l, . . . , κ0,j+r, κ̂i+1, . . . , κ̂p̂},

then

Pr(K̂|Y)

Pr(K̃|Y)
= op(1).

Proof: Let T0 = κ̂i+1 − κ̂i, t1 = κ0,j−l − κ̂i, . . . , tl+r+2 = κ̂i+1 − κ0,j+r. By the Stirling
formula, we have

Pr(K̂|Y)

Pr(K̃|Y)

=

∏T0−1
j=1 (j − σ)

∏l+r+2
h=1 th!

T0!
∏l+r+2

h=1

∏th−1
j=1 (j − σ)

p̂+l+r+1∏

s=p̂+1

(
s+ 1

α + sσ

)
C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i,κ0,j−l]) · · ·C(Y(κ0,j+r,κ̂i+1])

=
C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i,κ0,j−l]) · · ·C(Y(κ0,j+r,κ̂i+1])
O

(∏l+r+2
j=1 tj

T0

)1+σ

.

By Lemma 5, let κ = mini=1,...,l+r+2 ti, there exists c2 > 0 such that

C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i,κ0,j−l]) · · ·C(Y(κ0,j+r,κ̂i+1])
= Op

{
T

(l+r+1)d/2
0 exp(−κc2)

}
.

Thus we obtain

Pr(K̂|Y)

Pr(K̃|Y)

= O

(∏l+r+2
j=1 tj

T0

)1+σ
C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i,κ0,j−l]) · · ·C(Y(κ0,j+r,κ̂i+1])

= O

(∏l+r+2
j=1 tj

T0

)1+σ

Op

{
T

(l+r+1)d/2
0 exp(−κc2)

}

= Op

{
T

(l+r+1)(d/2+1+σ)
0 exp(−κc2)

}
. (12)

By definition of H(mI),

κ ≥ mI ≥ c{log(T )}1+ε
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for some c > 0 and ε > 0 when T is large enough. Clearly, T ≥ T0. Thus as T →∞,

T
(l+r+1)(d/2+1+σ)
0 exp(−κc2)

≤ T (l+r+1)(d/2+1+σ) exp
[
−{log(T )}1+εcc2

]

= exp
[
log(T )c0 − {log(T )}1+εcc2

]

= exp (log(T )[c0 − {log(T )}εcc2]) −→ 0 (13)

where c0 = (l + r + 1)(d/2 + 1 + σ). With (12) and (13), we achieve

Pr(K̂|Y)

Pr(K̃|Y)
= op(1).

Lemma 7. Assume the conditions in Theorem ?? hold, and K0 is a subset of H(mI). Let K̂
be the estimated change point set determined by our algorithm. Suppose that there exists an
estimated change point κ̂i, such that no true change point is within its mI-neighbourhood,
i.e., κ0j /∈ (κ̂i −mI , κ̂i +mI) for all j. Considering a newly estimated change point set

K̃ = {κ̂1, . . . , κ̂i−1, κ̂i+1, . . . , κ̂p̂},
then

Pr(K̂|Y)

Pr(K̃|Y)
= op(1).

Proof: By the Stirling formula, we have

Pr(K̂|Y)

Pr(K̃|Y)

=
α + (p̂+ 1)σ

p̂+ 2

C(Y(κ̂i−1,κ̂i])C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i−1,κ̂i+1])

×
∏κ̂i+1−κ̂i−1

j=1 (j − σ)/(κ̂i+1 − κ̂i)!∏κ̂i+1−κ̂i−1−1
j=1 (j − σ)/(κ̂i+1 − κ̂i−1)!

κ̂i−κ̂i−1−1∏

j=1

(j − σ)/(κ̂i − κ̂i−1)!

=
α + (p̂+ 1)σ

p̂+ 2

C(Y(κ̂i−1,κ̂i])C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i−1,κ̂i+1])

× Γ(κ̂i − κ̂i−1 − σ)Γ(κ̂i+1 − κ̂i − σ)(κ̂i+1 − κ̂i−1)!

Γ(1− σ)Γ(κ̂i+1 − κ̂i−1 − σ)(κ̂i − κ̂i−1)!(κ̂i+1 − κ̂i)!

= O

{
(κ̂i+1 − κ̂i−1)

(κ̂i+1 − κ̂i)(κ̂i − κ̂i−1)

}1+σ C(Y(κ̂i−1,κ̂i])C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i−1,κ̂i+1])
. (14)

By Lemma 6, every true change point κ0j is in K̂. Thus, there is no true change point
between κ̂i−1 and κ̂i+1. Then using Lemma 4, we obtain

C(Y(κ̂i−1,κ̂i]) = p(κ̂i−1,κ̂i](θ̂(κ̂i−1,κ̂i])π(θ̂(κ̂i−1,κ̂i]) det(σ̂(κ̂i−1,κ̂i])Op(1),

C(Y(κ̂i,κ̂i+1]) = p(κ̂i,κ̂i+1](θ̂(κ̂i,κ̂i+1])π(θ̂(κ̂i,κ̂i+1]) det(σ̂(κ̂i,κ̂i+1])Op(1),

C(Y(κ̂i−1,κ̂i+1]) = p(κ̂i−1,κ̂i+1](θ̂(κ̂i−1,κ̂i+1])π(θ̂(κ̂i−1,κ̂i+1]) det(σ̂(κ̂i−1,κ̂i+1])Op(1).
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It follows that

C(Y(κ̂i−1,κ̂i])C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i−1,κ̂i+1])

=
p(κ̂i−1,κ̂i](θ̂(κ̂i−1,κ̂i]) det(σ̂(κ̂i−1,κ̂i])

p(κ̂i−1,κ̂i+1](θ̂(κ̂i−1,κ̂i+1])
× p(κ̂i,κ̂i+1](θ̂(κ̂i,κ̂i+1]) det(σ̂(κ̂i,κ̂i+1])

π(θ̂(κ̂i−1,κ̂i+1])

×π(θ̂(κ̂i−1,κ̂i])π(θ̂(κ̂i,κ̂i+1])

det(σ̂(κ̂i−1,κ̂i+1])
Op(1).

As θ̂(κ̂i−1,κ̂i]
P→ θ0, θ̂(κ̂i,κ̂i+1]

P→ θ0 and θ̂(κ̂i−1,κ̂i+1]
P→ θ0 where θ0 is the true parameter, and

π(θ) is continuous, by the continuous mapping theorem, we know

C(Y(κ̂i−1,κ̂i])C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i−1,κ̂i+1])

=
p(κ̂i−1,κ̂i](θ̂(κ̂i−1,κ̂i]) det(σ̂(κ̂i−1,κ̂i])

p(κ̂i−1,κ̂i+1](θ̂(κ̂i−1,κ̂i+1])
× p(κ̂i,κ̂i+1](θ̂(κ̂i,κ̂i+1]) det(σ̂(κ̂i,κ̂i+1])

det(σ̂(κ̂i−1,κ̂i+1])
Op(1)

Further,

C(Y(κ̂i−1,κ̂i])C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i−1,κ̂i+1])

=
p(κ̂i−1,κ̂i](θ̂(κ̂i−1,κ̂i]) det(σ̂(κ̂i−1,κ̂i])

p(κ̂i−1,κ̂i+1](θ̂(κ̂i−1,κ̂i+1])
× p(κ̂i,κ̂i+1](θ̂(κ̂i,κ̂i+1]) det(σ̂(κ̂i,κ̂i+1])

det(σ̂(κ̂i−1,κ̂i+1])
Op(1)

=
p(κ̂i−1,κ̂i](θ̂(κ̂i−1,κ̂i])p(κ̂i,κ̂i+1](θ̂(κ̂i,κ̂i+1])

p(κ̂i−1,κ̂i+1](θ̂(κ̂i−1,κ̂i+1])
Op

{
κ̂i+1 − κ̂i−1

(κ̂i+1 − κ̂i)(κ̂i − κ̂i−1)

}d/2
. (15)

Note that by the second result of Lemma 3,

p(κ̂i−1,κ̂i](θ̂(κ̂i−1,κ̂i])p(κ̂i,κ̂i+1](θ̂(κ̂i,κ̂i+1])

p(κ̂i−1,κ̂i+1](θ̂(κ̂i−1,κ̂i+1])

=
p(κ̂i,κ̂i+1](θ̂(κ̂i,κ̂i+1])p(κ̂i−1,κ̂i](θ̂(κ̂i−1,κ̂i])p(κ̂i−1,κ̂i](θ0)−1

p(κ̂i,κ̂i+1](θ0)p(κ̂i−1,κ̂i+1](θ̂(κ̂i−1,κ̂i+1])p(κ̂i−1,κ̂i+1](θ0)−1

= Op(1). (16)

Thus, combining (14), (15) and (16), we obtain

Pr(K̂|Y)

Pr(K̃|Y)
= O

{
(κ̂i+1 − κ̂i−1)

(κ̂i+1 − κ̂i)(κ̂i − κ̂i−1)

}1+σ C(Y(κ̂i−1,κ̂i])C(Y(κ̂i,κ̂i+1])

C(Y(κ̂i−1,κ̂i+1])

= O

{
(κ̂i+1 − κ̂i−1)

(κ̂i+1 − κ̂i)(κ̂i − κ̂i−1)

}1+σ

Op

{
κ̂i+1 − κ̂i−1

(κ̂i+1 − κ̂i)(κ̂i − κ̂i−1)

}d/2

= Op

{
κ̂i+1 − κ̂i−1

(κ̂i+1 − κ̂i)(κ̂i − κ̂i−1)

}d/2+1+σ

.
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Note that (κ̂i+1 − κ̂i) + (κ̂i − κ̂i−1) = (κ̂i+1 − κ̂i−1), thus either (κ̂i+1 − κ̂i−1)/(κ̂i+1 − κ̂i) or
(κ̂i+1 − κ̂i−1)/(κ̂i − κ̂i−1) will go to a constant c > 0 as T →∞. Therefore,

κ̂i+1 − κ̂i−1

(κ̂i+1 − κ̂i)(κ̂i − κ̂i−1)
→ 0,

since both (κ̂i − κ̂i−1) and (κ̂i+1 − κ̂i) go to infinity as T →∞. It follows that

Pr(K̂|Y)

Pr(K̃|Y)
= Op

{
κ̂i+1 − κ̂i−1

(κ̂i+1 − κ̂i)(κ̂i − κ̂i−1)

}d/2+1+σ

= op(1).

Proof of Theorem ??:
By Lemma 6, we know all the true change points will fall into K̂ with probability one as

T → ∞. Lemme 7 implies that all the estimated change points out of mI-neighbourhood
of true change points can be removed in probability as T → ∞. By the definition of set
H(mI), for any two points τi and τj with τi < τj in H(mI), (τj− τi) > mI . We obtain K̂ by
optimizing over H(mI). Thus for any true change point, there is one and only one point in

K̂ within its mI-neighbourhood, i.e., the true change point itself. Therefore, with T →∞,

p̂
P−→ p0 and sup

b∈K0

inf
a∈K̂
|a− b| = Op (1) .
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