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A B S T R A C T

The relationship between brain functional connectivity and structural connectivity has caught extensive
attention of the neuroscience community, commonly inferred using mathematical modeling. Among many
modeling approaches, spectral graph model (SGM) is distinctive as it has a closed-form solution of the wide-
band frequency spectra of brain oscillations, requiring only global biophysically interpretable parameters.
While SGM is parsimonious in parameters, the determination of SGM parameters is non-trivial. Prior works on
SGM determine the parameters through a computational intensive annealing algorithm, which only provides
a point estimate with no confidence intervals for parameter estimates. To fill this gap, we incorporate the
simulation-based inference (SBI) algorithm and develop a Bayesian procedure for inferring the posterior
distribution of the SGM parameters. Furthermore, using SBI dramatically reduces the computational burden
for inferring the SGM parameters. We evaluate the proposed SBI-SGM framework on the resting-state
magnetoencephalography recordings from healthy subjects and show that the proposed procedure has similar
performance to the annealing algorithm in recovering power spectra and the spatial distribution of the alpha
frequency band. In addition, we also analyze the correlations among the parameters and their uncertainty
with the posterior distribution which cannot be done with annealing inference. These analyses provide a
richer understanding of the interactions among biophysical parameters of the SGM. In general, the use of
simulation-based Bayesian inference enables robust and efficient computations of generative model parameter
uncertainties and may pave the way for the use of generative models in clinical translation applications.
1. Introduction

A key endeavor in the field of neuroscience is to uncover the
relationship between the brain’s complex electrophysiological and func-
tional activity, and its underlying structural wiring contained in white
matter fiber projections (Fornito et al., 2015; Suárez et al., 2020).
Functional activity between the gray matter regions is estimated with
functional magnetic resonance imaging (fMRI), electroencephalogra-
phy (EEG), and magnetoencephalography (MEG), while the structural
wiring is assessed using diffusion tensor imaging from MRI. The brain
structure-function relationship is then investigated using various data-
driven and mathematical modeling-based techniques, assuming struc-
tural connectivity as a graph with different brain regions as graph nodes
connected to each other via edges that are informed by the white matter
fiber projections.

While both data-driven (Strogatz, 2001; Buckner et al., 2005;
Achard et al., 2006; Bassett and Bullmore, 2006; Chatterjee and Sinha,
2007; He et al., 2008; Ghosh et al., 2008; Bullmore and Sporns,
2009; Rubinov et al., 2009; van den Heuvel et al., 2009; Bassett and
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Bullmore, 2009; Abdelnour et al., 2014; Hermundstad et al., 2013;
Park and Friston, 2013; Abdelnour et al., 2018) as well as modeling
techniques (Wilson and Cowan, 1973; David and Friston, 2003;
Destexhe and Sejnowski, 2009; El Boustani and Destexhe, 2009; Honey
et al., 2009; Spiegler and Jirsa, 2013; Cabral et al., 2014; Muldoon
et al., 2016; Siettos and Starke, 2016; Cabral et al., 2017; Breakspear,
2017) have been employed to uncover the brain structure-function
relationship, mathematical models additionally provide insights into
the underlying biophysics of brain activity. After fitting the model to
empirical fMRI, EEG, and MEG data, the inferred model parameters
can serve as biophysically interpretable markers of disease and brain
states (Honey and Sporns, 2008; Alstott et al., 2009; Haan et al., 2012;
Yang et al., 2016; Zimmermann et al., 2018; Singh et al., 2020). For
example, Zimmermann et al. Zimmermann et al. (2018) demonstrated
that the model parameters can predict cognition. However, the
practical impact of model-based biomarkers of pathophysiology is
hampered by two key challenges, described below.
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Lack of interval estimations and posterior probabilities. An important
oal of practical model fitting is to quantify how well a model’s param-
ters explain empirical neuroimaging data, and how confidently those
stimates can be obtained. It is, therefore, necessary to capture their
ariability and find out all possible parameter settings compatible with
he observed phenomena (Gonçalves et al., 2020). Bayesian inference
s the established approach for achieving these goals, by making avail-
ble the posterior distribution of parameters given the observations.
osterior distribution in turn provides rich information about how
odel parameters interact together, and quantifies the uncertainty of

he model output — potentially critical for obtaining computational
iomarkers in disease. Unfortunately, Bayesian inference methods have
een proven to be quite challenging for most current computational
odels of brain activity (Gonçalves et al., 2020; Cranmer et al., 2020;
an Geit et al., 2016).
Tractability of model inference. We identify three issues limiting the

ractability of Bayesian model evidence in the field. First, powerful
ampling methods like Markov Chain Monte Carlo (MCMC) require
xtremely large samples, numbering in the hundreds of thousands.
ost current models, like the coupled neural mass models (NMMs),

re evaluated via time-consuming numerical integration techniques,
hich in turn impose a prohibitive computational burden on any

ampling technique. Second, coupled NMMs involve large parame-
er spaces, i.e. number of internal parameters that must be jointly
nferred, making full Bayesian inference impractical. Third, due to
nherent non-linearity, the theoretical posterior density in even the
implest computational models is so convoluted, non-smooth, and non-
onvex that conventional optimization or MCMC sampling techniques
ncounter huge challenges. Many of these issues are highlighted in
revious studies (Hartoyo et al., 2019; Raj et al., 2022; Xie et al., 2019),
nd together they have ensured that hardly any Bayesian inference is
erformed in these settings.

In this paper, we present a novel way for Bayesian inference of
omputational models of neural activity, focusing specifically on the
ecently proposed spectral graph model (SGM), a linear biophysical
enerative model that can accurately capture the steady state wide-
and power spectral density (PSD) as well as the spatial distribution
f the alpha band obtained from MEG (Raj et al., 2020). We choose
he SGM for the following reasons:

1. SGM involves a parsimonious set of global biophysically inter-
pretable parameters; in our previous paper, we demonstrated
that only 7 global, spatially-invariant parameters, each having
distinct biophysical meaning, were sufficient to accurately cap-
ture empirical MEG PSD (Verma et al., 2022a,b). This may be
compared against previous models that have typically required
substantially more spatially-varying parameters.

2. SGM explicitly estimates regional PSD and therefore can directly
fit the frequency PSD obtained from MEG/EEG. Other mod-
els typically provide time-domain simulations only, and their
spectral content is usually not a target of model fitting.

3. SGM is extremely fast to evaluate since its solution can be
obtained in a closed-form in the frequency domain. Other models
typically require lengthy time-domain simulations, which can be
impractical in MCMC or other sampling techniques.

As a result of its linearity and closed-form evaluation without
he need for long simulations, SGM parameter inference is far more
ractable compared to non-linear neural mass models — where identi-
iability of model parameter is not guaranteed (Hartoyo et al., 2019;
aj et al., 2022; Xie et al., 2019).

In our prior works we had estimated SGM parameters using a
lobal optimization algorithm, the dual annealing method, as point
stimates (Raj et al., 2020; Verma et al., 2022a,b; Raj et al., 2022),
s a preferred alternative over continuous gradient descent-based min-
mization. However, since the objective function of estimating SGM
2

arameter (Raj et al., 2020; Verma et al., 2022a) is non-convex, the
annealing approach does not guarantee a global optimum. Moreover, a
single point estimate from the annealing method is far from enough
to uncover the underlying entire range and behavior of biophysical
processes and to lead to new insights. On the contrary, Bayesian method
allows the estimation of the full posterior distribution of the SGM
parameters, which is necessary for biological interpretation. As a result,
Bayesian method is more suitable for inferring the SGM parameters.
However, the conventional Bayesian inference is challenging due to the
fact that the theoretical posterior density of SGM parameters may be
rather complicated which causes difficulty in sampling.

To circumvent the computational difficulty, we propose a novel
method to perform Bayesian inference of the SGM parameters. The
method approximates the posterior density of the SGM parameters by
using a neural network model, which is trained through a simulation-
based inference (SBI) framework (Cranmer et al., 2020). Thus the
method is referred to as SBI-SGM. Our main contribution is to show that
this custom combination of SGM with SBI is exquisitely well-matched
for estimating posterior distribution of generative model parameters.

This provides a far more appealing practical utility, which may be
exploited in future clinical applications. Given its speed, this tool can be
used to quickly infer posteriors of model parameters for a large number
of subjects which can subsequently be used to identify parsimonious
markers of disease and brain states. In particular, SBI-SGM can capture
the uncertainty of the estimates via providing the credible intervals,
which are instrumental in deriving statistically robust conclusions.
Once extensive validation on larger samples have been demonstrated,
our approach can be a meaningful step in alleviating the critical issue
of lack of large sets of empirical data.

Applying the SBI tool to the SGM, we demonstrate that the posteri-
ors can accurately capture the empirical spatial distribution of alpha
frequency band and PSD in MEG, and the inference of posteriors is
substantially faster than the point estimate inference algorithm used
in prior works. This combination of a fast and parsimonious forward
model (SGM) with a fast neural network for posterior inference (SBI)
is not currently available in the field of structure-function relation-
ship, and could constitute a critical advance in the applicability of
computational models to practical scenarios.

2. Methods

2.1. Dataset

We study the resting-state MEG data obtained from 36 healthy
subjects (23 males, 13 females; 26 left-handed, 10 right-handed; mean
age 21.75 years, age range 7–51 years) as also reported in Raj et al.’s
study (Raj et al., 2020; Xie et al., 2020). All study procedures were ap-
proved by the institutional review board at the University of California
at San Francisco and were in accordance with the ethics standards of
the Helsinki Declaration of 1975 as revised in 2008. MRI followed by
tractography was used to generate the connectivity and distance matri-
ces. The publicly available dataset consisted of processed connectivity
and distance matrices, and PSD for every subject. The data collection
procedure was described in Raj et al. (2020), Verma et al. (2022a) as
well as summarized below.

MRI. A 3 T TIM Trio MR scanner (Siemens, Erlangen, Germany) was
used to perform MRI using a 32-channel phased-array radiofrequency
head coil. High-resolution MRI of each subject’s brain was collected
using an axial 3D magnetization prepared rapid-acquisition gradient-
echo T1-weighted sequence (echo time [TE] = 1.64 ms, repetition time
[TR] = 2530 ms, TI = 1200 ms, flip angle of 7◦) with a 256-mm
ield of view, and 160 1.0-mm contiguous partitions at a 256 × 256

matrix. Whole-brain diffusion-weighted images were collected at 𝑏 =
1,000s/mm2 with 30 directions using 2-mm voxel resolution in-plane
nd through-plane.
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Region parcellations. The T1-weighted images were parcellated into 68
ortical regions and 18 subcortical regions using the Desikan–Killiany
tlas available in the FreeSurfer software (Fischl et al., 2002). To
o this, the subject-specific T1-weighted images were back-projected
o the atlas using affine registration, as described in the previous
tudies (Abdelnour et al., 2014; Owen et al., 2013).

tructural connectivity networks. Different structural connectivity net-
orks were reconstructed with the same Desikan–Killiany parcellations.
irstly, openly available diffusion MRI data were obtained from the
GH-USC Human Connectome Project to create an average template

onnectome. As in previous studies (Abdelnour et al., 2014; Owen
t al., 2013), subject-specific structural connectivity was computed on
iffusion MRI data: Bedpostx was used to determine the orientation
f brain fibers in conjunction with FLIRT, as implemented in the FSL
oftware (Jenkinson et al., 2012). In order to determine the elements of
he adjacency matrix, tractography was performed using probtrackx2.
000 streamlines were initiated from each seed voxel corresponding to
cortical or subcortical gray matter structure and how many of these

treamlines reached a target gray matter structure was tracked. The
eighted connection between the two structures 𝑐𝑖,𝑗 , was defined as

he number of streamlines initiated by voxels in region 𝑖 that reach any
oxel within region 𝑗, normalized by the sum of the source and target
egion volumes (𝑐𝑖,𝑗 =

𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒𝑠
𝑣𝑖+𝑣𝑗

). Afterward, connection strengths were
veraged between both directions (𝑐𝑖,𝑗 and 𝑐𝑗,𝑖) to form undirected

edges. To determine the geographic location of an edge, the top 95%
of nonzero voxels by streamline count were computed for both edge
directions. The consensus edge was defined as the union between both
post-threshold sets.

MEG data. MEG recordings were acquired at UCSF using a 275-channel
CTF Omega 2000 whole-head MEG system from VSM MedTech (Coquit-
lam, BC, Canada). All subjects were instructed to keep their eyes closed
for 5 min while their MEGs were recorded at a sampling frequency of
1200 Hz.

MEG processing and source reconstruction. MEG recordings were down-
sampled from 1200 Hz to 600 Hz, then digitally filtered to remove DC
offset and any other noisy artifact outside of the 1 to 160 Hz bandpass
range. Since MEG data are in sensor space, meaning they represent
the signal observable from sensors placed outside the head, this data
needed to be ‘‘inverted’’ in order to infer the neuronal activity that had
generated the observed signal by solving the so-called inverse problem.
Adaptive spatial filtering algorithms were used from the NUTMEG
software tool written in house (Dalal et al., 2004). To prepare for
source localization, all MEG sensor locations were co-registered to each
subject’s anatomical MRI scans. The lead field (forward model) for each
subject was calculated in NUTMEG using a multiple local-spheres head
model (three-orientation lead field) and an 8 mm voxel grid which
generated more than 5000 dipole sources, all sources were normalized
to have a norm of 1. Finally, the MEG recordings were projected into
the source space using a beamformer spatial filter. Only the sources be-
longing to the 68 cortical regions were selected to be averaged around
the centroid. All dipole sources were labeled based on the Desikan–
Killiany parcellations, then sources within a 20 mm radial distance to
the centroid of each brain region were extracted, and the average time
course of each region’s extracted sources served as empirical resting-
state data for our proposed model. MEG recordings were bandpass
filtered between 2 to 45 Hz using firls in MATLAB (Anon, 2020)
and the static frequency PSD was generated for every region of interest
using the pmtm algorithm in MATLAB (Anon, 2020).

2.2. Spectral graph model

SGM is a hierarchical, linear, analytic model of brain oscillations,
which has a closed-form solution in the Fourier frequency domain via
3

the eigen-decomposition of a graph Laplacian (Raj et al., 2020; Verma
et al., 2022a,b). A typical SGM has two model layers, a mesoscopic
layer for the local neuronal subpopulations of every brain region and
a macroscopic layer for the long-range excitatory neuronal subpopula-
tions of the whole brain. SGM is briefly described below, and detailed
illustrations can be found in the supplementary document and in prior
publications (Raj et al., 2020; Verma et al., 2022a).

SGM is characterized by seven identifiable parameters 𝐬 = (𝜏𝑒, 𝜏𝑖, 𝛼,
𝑣, 𝑔𝑒𝑖, 𝑔𝑖𝑖, 𝜏𝐺)T, which include the excitatory and inhibitory time con-
stants 𝜏𝑒, 𝜏𝑖 and neural gains 𝑔𝑒𝑖 and 𝑔𝑖𝑖 at the mesoscopic level, and
long-range excitatory time constant 𝜏𝐺, coupling constant 𝛼, speed 𝑣
at the macroscopic level. Given the signals [𝑥1(𝑡),… , 𝑥𝑁 (𝑡)]T with 𝑁
regions of interest (ROIs) in the time domain, the closed-form solution
of SGM is obtained in the Fourier domain:

𝐗(𝐬, 𝜔)=[  (𝑥1(𝑡)),… ,  (𝑥𝑁 (𝑡))]T
(

𝑗𝜔𝐈 + 1
𝜏𝐺

𝐹𝐺(𝜏𝐺;𝜔)(𝛼, 𝑣;𝜔)
)−1

𝐻local(𝜏𝑒, 𝜏𝑖, 𝑔𝑒𝑖, 𝑔𝑖𝑖;𝜔)𝐏(𝜔), (1)

here 𝜔 is the angular frequency, 𝐗(𝐬, 𝜔) is a vector of the Fourier
ransformation, or equivalently the PSD, of the macroscopic signal over
ll brain regions of interest at frequency 𝜔,  is the Fourier transfor-

mation,  is the complex Laplacian, 𝐻local is the mesoscopic model’s
transfer function, 𝐏(𝜔) is the input noise spectrum, and 𝐹𝐺(𝜔) is the
ourier transform of a Gamma-shaped neural response function, given
s 1∕𝜏2𝐺
(𝑗𝜔+1∕𝜏𝐺)2

. This response function is governed by the characteristic
ong-range excitatory time constant 𝜏𝐺, and the function is intended

to serve as a lumped model of various processes, including dendritic
arborization, somatic conductance, synaptic capacitance, etc (Raj et al.,
2020). To facilitate the illustration of SGM, a schematic is presented in
the top panel of Fig. 1.

2.3. Simulation-based inference for SGM

SBI is a powerful tool for the inference of large complex statistical
models that have been extensively applied in many areas of science and
engineering (Papamakarios and Murray, 2016; Greenberg et al., 2019;
Durkan et al., 2019). We adapt the SBI method for SGM parameter es-
timation and inference. Let 𝐗(𝐬, 𝛺) = {𝐗(𝐬, 𝜔)}𝜔∈𝛺 be the model output
PSD in dB scale (Persson and Björkman, 1988) where 𝛺 is the set of the
frequency points we used and it contains 40 equally spaced frequencies
in the range 2–45 Hz in the manuscript. 𝐺{𝐗(𝐬, 𝛺)} is a monotonic
transformation that standardizes the PSD across the frequency into a
z-score; standardizes the regional distribution of alpha band power
(i.e. summation of PSD from 8–12 Hz); and finally concatenates both
into a single vector. Here and throughout the text, we present the PSD
in dB scale. In our SBI-SGM framework, we assume the data model is

𝐲 = 𝐺 {𝐗(𝐬, 𝛺)} + 𝝐, (2)

where 𝝐 ∼ 𝑁(𝟎, 𝜎2𝐈) is additive i.i.d. noise with standard deviation (SD)
and 𝐈 is an identity matrix.
The random noise in (2) captures the model misfitting error in SGM

odel. We adopt the Gaussian noise for convenience; indeed, SBI-SGM
emonstrates resilience concerning the choice of the noise distribution,
rovided that the standard deviation is well controlled, as delineated
n Section S.2 of the supplementary material. Without this random
oise, the target posterior density is discontinuous, which is difficult
o estimate due to the well-known Gibbs phenomenon (Llanas et al.,
008). Adding this random noise to the model results in a smooth
osterior distribution of SGM parameters, which can be accurately
pproximated by a neural network (Leshno et al., 1993).

Similarly, we define the observed sample 𝐲𝑜 = 𝐺
{

𝐗MEG(𝛺)
}

where
MEG(𝛺) is the observed MEG PSD.

Since the parameters in the SGM model are assumed to be bounded
o satisfy biological constraints, bounded priors are typically adopted
or them, which causes difficulties for posterior sampling with SBI
Deistler et al., 2022). To address this issue, we re-parameterize the
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Fig. 1. Top: A schematic of SGM. Bottom: The pipeline of SBI inference for SGM.
parameters so that the posterior sampling can be performed on the
real line. More specifically, let (𝑥) be a scaled logit transformation
function (Hilbe, 2009) defined as

(𝑥) ≡ 10 × log
{

(𝑥 − 𝑥𝑙)∕(𝑥𝑢 − 𝑥𝑙)
1 − (𝑥 − 𝑥𝑙)∕(𝑥𝑢 − 𝑥𝑙)

}

, for 𝑥 ∈ [𝑥𝑙 , 𝑥𝑢],

where 𝑥𝑙 and 𝑥𝑢 are lower and upper bounds of variable 𝑥, respectively.
Slightly abusing the notation, let 𝜽 = (𝐬), where (𝐬) represents the
values of function  applied on each element of 𝐬.

Under a Bayesian framework, we are interested in the posterior
distribution of 𝜽 given 𝐲, particularly the Bayesian credible interval of
𝜽, which captures the uncertainty of the SGM parameters. To obtain the
credible interval, we estimate the posterior distribution of 𝜽 through the
SBI procedure (Cranmer et al., 2020). The density of 𝐲 is denoted by
𝑝(𝐲|𝜽) following (2), which is a multivariate Gaussian density function.
We impose a multivariate Gaussian prior 𝜋(𝜽) on 𝜽. The posterior den-
sity is 𝑞𝜱(𝜽|𝐲) ∝ 𝜋(𝜽)𝑝(𝐲|𝜽), where 𝜱 is the unknown parameters that
determine the posterior distribution. Instead of obtaining the posterior
density for the SGM parameters 𝐬 directly, we first derive the posterior
density for 𝜽, which results in the target posterior distribution through
a Jacobian transformation (Henderson and Searle, 1979).
4

We use a deep learning architecture, namely neural spline flow
(NSF) (Durkan et al., 2019), to model the functional form of 𝑞𝜱, where
𝜱 is the parameter in the deep learning network. The dimension of
𝜱 increases with the number of network layers in NSF, and when the
dimension of 𝜱 approaches infinity, 𝑞𝜱 approaches the true posterior
distribution. When the deep learning architecture is given, 𝜱 is the
only unknown parameter in 𝑞𝜱(𝜽|𝐲). Hence estimating the posterior
density is equivalent to estimating 𝜱. Now note that the true posterior
distribution maximizes 𝐄[log{𝑞𝜱(𝜽|𝐲)}], where the expectation is taken
with respect to 𝐲 and 𝜽, we propose to obtain an estimator for 𝜱
through maximizing the empirical version of 𝐄[log{𝑞𝜱(𝜽|𝐲)}], that is
1
𝑀

∑𝑀
𝑚=1 log

{

𝑞𝜱(𝜽𝑚|𝐲𝑚)
}

, where the samples 𝐲𝑚 and 𝜽𝑚, 𝑚 = 1,… ,𝑀
are the simulated realizations of 𝐲 and 𝜽 based on 𝑝(𝐲|𝜽) and 𝜋(𝜽),
respectively.

To obtain the posterior density for 𝐬 given the observed sampled
from the empirical PSD of MEG data 𝐲𝑜 = 𝐺

{

𝐗MEG(𝛺)
}

, we can feed
𝐲𝑜 in the neural network and obtain the estimated posterior distribution
𝑞𝜱(𝜽|𝐲𝑜) with the estimated parameter �̂�. The target posterior distribu-
tion of 𝐬 is 𝑞�̂� × | det(𝐉)| where 𝐉 is the Jacobian matrix, i.e., 𝐉 = 𝜕𝜽∕𝜕𝐬.
We illustrate the details of obtaining the posterior distribution of 𝜽 in
Algorithm 1, which contains a simulation step and an optimization step.



NeuroImage 279 (2023) 120278H. Jin et al.

c
M
p
A
s
b
c
d
w
s
s
e
t

t
n
i
a
T
a
c
e
p
S
(
a

3

3
o

m

c
c
c
M
t
t
c
s

w
t

Algorithm 1 Posterior estimation with re-parameterization
Require: A multivariate Gaussian prior 𝜋(𝜽) ∼ 𝑁(0, 100𝐈) a likelihood

𝑝(𝐲|𝜽), an observation 𝐲𝑜.
Simulation:
for 𝑚 = 1,… ,𝑀 do

Sample 𝜽𝑚 ∼ 𝜋(𝜽)
Sample 𝐲𝑚 ∼ 𝑝(𝐲|𝜽𝑚)

end for
Optimization:
�̂� ← argmin

𝜱
− 1

𝑀
∑𝑀

𝑚=1 log
{

𝑞𝜱(𝜽𝑚|𝐲𝑚)
}

return 𝑞�̂�(𝜽|𝐲𝑜) as the estimate of the posterior distribution of 𝜽. The
posterior distribution of 𝐬 is 𝑞�̂� × | det(𝐉)|, where 𝐉 is the Jacobian
matrix, i.e., 𝐉 = 𝜕𝜽∕𝜕𝐬.

2.4. Implementation details

For each subject, we use their MEG data from 68 cortical regions
according to the Desikan–Killiany atlas (Desikan et al., 2006) to ob-
tain the posterior samples of the SGM parameters 𝐬. Under this atlas,
we obtain a 68-region 𝐗(𝐬, 𝜔) at frequency 𝜔, and the dimension of
𝐺 {𝐗(𝐬, 𝛺)} is 68 × 40 + 68 = 2788 which is comprised of both the PSD
feature and the spatial feature in the alpha band.

We implement SBI-SGM using the sbi package in Python (https:
//www.mackelab.org/sbi/) (Tejero-Cantero et al., 2020), where the
hyperparameters in the original SBI algorithms are adopted as the
default values provided in the package. We discuss the choice of the
standard deviation of the noise 𝜎 and the number of simulation samples
in Simulation step in Algorithm 1 in the next section.

In SBI-SGM, we adopt an average template structural connectome
reated via openly available diffusion MRI data obtained from the
GH-USC human connectome project (HCP) for training a universal

osterior mapping from observation to the posterior distribution using
lgorithm 1. After obtaining a trained posterior density for each ob-
erved 𝐲𝑜, we draw a posterior sample of SGM parameters, denoted
y �̃�. We then obtain 𝐗(̃𝐬, 𝛺) using (1) and the individual structural
onnectome. Finally, we construct the standardized PSD and spatial
istribution of the alpha band PSD as a 𝐺 transformation of 𝐗(̃𝐬, 𝛺),
here the function 𝐺 is defined in (2). We perform this posterior

ampling process 1000 times to obtain a set of posterior samples of the
tandardized PSD and spatial distribution of the alpha band PSD for
ach observed 𝐲𝑜. The pipeline of SBI inference for SGM is presented in
he bottom panel of Fig. 1.

We compare the performance of SBI-SGM with the performance of
he annealing SGM approach (Raj et al., 2020; Verma et al., 2022a,b),
amely Ann-SGM, on our MEG data. The details of the annealing
mplementation can be found in Verma et al. (2022a). SGM model
ssumes the parameters have finite supports as the ones listed in
able 1. In Ann-SGM, three different bounds are evaluated for 𝑔𝑒𝑖
nd 𝑔𝑖𝑖 sequentially, and the largest bounds that satisfy the stability
ondition defined by Verma et al. (2022b) are chosen in the subsequent
stimation. In SBI-SGM, the largest bounds in Table 1 are adopted for
arameters (𝑔𝑒𝑖, 𝑔𝑖𝑖) and we only retain the posterior samples of the
GM parameters within the stability boundary defined in Verma et al.
2022b). For the other five parameters, SBI-SGM uses the same bounds
s Ann-SGM does.

. Results

.1. Adding random noise to the SGM improves the reconstructing accuracy
f the PSD

For each subject, we obtain the reconstructed PSD by taking the
ean of the posterior samples of the PSD. We then study how the
5

hange in noise variation affects the performance of SBI-SGM in re-
onstructing the observed PSD. We compare the median Pearson’s
orrelation between the reconstructed PSD and the observed PSD from
EG. Specifically, for each ROI, we calculate the correlation between

he reconstructed PSD and observed PSD from MEG. We then average
he correlations over all ROIs and obtain the median of this average
orrelation over 36 subjects. In this study, the number of simulations
amples is fixed at 100,000 in the Simulation step in Algorithm 1 and

the standard deviation of 𝜖 varies from 0 to 3.2. We report the mean
results over 10 repetitions. Note that when 𝜎 = 0, there is no random
noise added.

Fig. 2A shows that compared to the model without random error
(when the 𝜎 = 0), adding random noise in (2) significantly reduces
the reconstruction errors. This result is consistent with our theoretical
conclusion that adding random noise results in a smooth posterior
density which can be accurately approximated by a neural network.
The Pearson’s correlation between the reconstructed and the observed
PSD increases when 𝜎 < 1.6 and starts to decrease after 𝜎 reaches 1.6,

hen the signal-to-noise ratio is not sufficiently large for the SBI-SGM
o recover the observed PSD. In practice, we suggest choosing 𝜎 in

[0.8, 2.0], which yields satisfactory performance with over 0.9 corre-
lation between reconstructed and observed PSD. For all the following
experiments, we fix 𝜎 = 1.6.

3.2. Increasing the number of simulation samples improves the SBI-SGM fit

We also investigate how the performance of SBI-SGM changes with
the number of simulations in Simulation step in Algorithm 1. Fig. 2B
shows that a larger number of simulations yields a better SBI-SGM fit
with a higher correlation between reconstructed and observed PSD.
As indicated by the right panel of Fig. 2B, the changes in Pearson’s
correlation are not very notable and it varies from 0.887 to 0.906.
However, when considering the standardized PSD curves for different
numbers of samples, a clear trend is observed that typically larger
sample size leads to a better fit visually. It is also worth noting that
the performance of SBI-SGM is stable after the number of simulations
reaches 100,000. Therefore, we choose 100,000 simulations in the
Simulation step in Algorithm 1 in the subsequent analyses.

3.3. Results from two representative MEG data

We show the results from two representative subjects whose Pear-
son’s correlations between reconstructed PSD and the observed PSD
are the top two closest to the median correlation across 36 subjects
in one experiment. To make it representative, we repeat the SBI-SGM
procedure 10 times and choose the experiment which yields an overall
correlation closest to the mean level in the 10 repetitions for the
analysis.

The posterior samples of the seven parameters as well as the PSD
for two subjects are displayed in Figs. 3A and B. In the left panels, we
compare the posterior density of SBI-SGM with the point estimate from
Ann-SGM. We can observe multiple modes from the posterior densities.
For 𝜏𝑒, 𝑣, and 𝑔𝑖𝑖, the point estimates from Ann-SGM are close to one
of the modes of the posterior distributions, while the estimates of the
rest of the parameters from Ann-SGM are far away from the posterior
modes from SBI-SGM.

The middle panels of Fig. 3 shows the posterior mean and 95%
credible interval of the PSD from SBI-SGM. In each subject, the 95%
credible interval covers the observed PSD at low frequencies (lower
than 20 Hz), which is consistent with the fact that SGM can successfully
recover the low-frequency PSD (Verma et al., 2022a).

Moreover, we vectorize the reconstructed and observed PSDs and
map them onto a 5-dimensional manifold using the uniform manifold
approximation and projection (UMAP) method proposed by McInnes
et al. (2018). As shown in the right panels of Fig. 3, the projection
of the observed PSD falls within the support of the projection of
the reconstructed PSDs in the manifold, which further validates our
Bayesian inference (Gabry et al., 2017).

https://www.mackelab.org/sbi/
https://www.mackelab.org/sbi/
https://www.mackelab.org/sbi/
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Table 1
SGM parameters and bounds for the parameter estimation for SBI and annealing.

Name Symbol Lower/upper bound

Excitatory time constant 𝜏𝑒 [0.005 s, 0.03 s]
Inhibitory time constant 𝜏𝑖 [0.005 s, 0.2 s]
Long-range connectivity coupling constant 𝛼 [0.1, 1]
Transmission speed 𝑣 [5 m/s, 20 m/s]
Alternating population gain 𝑔𝑒𝑖 [0.001, 0.7], [0.001, 0.5], [0.001, 0.4]
Inhibitory gain 𝑔𝑖𝑖 [0.001, 2.0], [0.001, 1.5], [0.001, 1.5]
Graph time constant 𝜏𝐺 [0.005 s, 0.03 s]
Fig. 2. The performance of SBI-SGM when varying the noise SD and the number of simulation samples. A: Left: Median standardized PSD obtained from MEG and SBI-SGM
with different noise SDs. Right: Change of Pearson’s correlation between reconstructed average PSD and the observed PSD when varying noise SDs. The red shadow indicates its
95% confidence interval. B: Left: Median standardized PSD obtained from MEG and SBI-SGM with different number of simulation samples. Right: Change of Pearson’s correlation
between reconstructed average PSD and the observed PSD when varying the number of simulation samples. The red shadow indicates its 95% confidence interval.
3.4. Cohort level analysis of MEG datasets

In SBI, the variability of the posterior distribution exists due to
the randomness of the simulated samples in the Simulation step and
the randomness in the posterior sampling procedure using the trained
posterior distribution. We evaluate the robustness of SBI-SGM in 10
repetitions. In Fig. 4A, we show the median of the reconstructed PSDs
over 36 subjects for each repetition, the PSD Pearson’s correlation
is changed between [0.905, 0.907] (shown in the caption). The results
6

indicate that SBI-SGM is robust throughout the repetitions. We choose
an experiment that yields a correlation closest to the mean level in the
10 repetitions in the subsequent analyses.

We analyze the posterior samples of the SGM parameters from SBI-
SGM across 36 MEG data. We first study the pair-wise correlation be-
tween the SGM parameters using the partial correlation method (Mar-
relec et al., 2006), which examines the correlation between any given
two parameters after removing the effect from other parameters, Fig. 4B
shows the pair-wise partial correlation averaged over 36 subjects. As
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Fig. 3. Result analysis from SBI-SGM for two representative MEG data whose Pearson’s correlations between reconstructed PSD and the observed PSD are the top two closest to
the median correlation across 36 subjects. A/B: Left: Posterior density of 7 parameters for one subject in the MEG dataset. The red vertical line and red star indicate the location
of the point estimate from the annealing algorithm. Middle: Posterior mean PSD and the 95% credible interval for the subject. The black curve indicates the observed average
PSD across ROIs. Right: Density estimations and observed values of low-dimensional representations after mapping raw vectorized PSDs to a 5-dimensional embedding manifold
with UMAP. The red vertical line and red star indicate the location of the representation for observed MEG data in the manifold.
shown in Fig. 4B, speed 𝑣 has no correlation with the other parameters.
The two time constants 𝜏𝑒, 𝜏𝑖 have weak positive correlation, and the
graph time constant 𝜏𝐺 shows moderate negative correlation with the
exhibitory time constant 𝜏𝑒 and small positive correlation with the
inhibitory time constant 𝜏𝑖. Fig. 4C shows the distribution of the pooled
posterior samples of the SGM parameters over 36 MEG data. Among
the seven SGM parameters, the posterior distributions of 𝜏𝑖, 𝜏𝐺 are
highly concentrated, which indicates their variabilities across different
subjects are small. The histogram of the inhibitory time constant 𝜏𝑖
presents a second peak around 0.15s. The speed 𝑣 has the highest
density round 15 m∕s.

We further investigate whether the SGM model in (1) can generate
the observed PSDs. We generate 1000 SGM parameters from the prior
distribution of 𝐬, and obtain simulated PSDs through (1). We then
compare the simulated PSDs with the observed ones. To facilitate the
visualization, we vectorize the simulated samples of PSDs and observed
PSDs and utilize the UMAP method to project them to a 2-dimensional
embedding manifold. As shown in Fig. 5, in the embedded manifold,
all the observed projections fall within the projections of the simulated
samples, which indicates that the SGM model captures the generating
mechanism of the observed PSD, and therefore is a reasonable model
of the data.

3.5. SBI-SGM and Ann-SGM comparision

We compare SBI-SGM with Ann-SGM. In Fig. 6A, we show the
correlations between the reconstructed and observed PSDs and the
correlations between reconstructed and observed spatial distributions
of the alpha band PSD resulting from SBI-SGM and Ann-SGM. We also
perform statistical tests on the difference between the results from
7

the two inference methods. Specifically, we calculate the Pearson’s
correlations for each ROI between the reconstructed and observed
PSDs and take the average across ROIs. Furthermore, we obtain the
spatial correlation as the inner product between the reconstructed and
observed spatial distribution of the alpha band PSD weighted by 𝐃+𝑤𝐈
where 𝐃 is the row degree normalized structural connectivity matrix, 𝐈
is the identity matrix, 𝑤 is an empirical weight, and we adopt 𝑤 = 10
as suggested by Raj et al. (2022).

As shown in Fig. 6A, SBI-SGM gives similar average correlation
and spatial correlation as Ann-SGM does with insignificant p-values
from two-sample t-tests. In Fig. 6B, we observe very similar spatial
distributions of the alpha band PSD from SBI-SGM and Ann-SGM,
and both of them are similar to the observed one from MEG data.
In conclusion, SBI-SGM has a similar performance as Ann-SGM on
recovering observed PSD and spatial distribution from the alpha band.

3.6. Computational cost of SBI-SGM

While SBI-SGM entails training a neural network, it remains consid-
erably faster than Ann-SGM. In our MEG data with 36 subjects, Ann-
SGM takes about 8 h to estimate the SGM parameters for each subject
and it necessitates repetition for every subject. On the same machine,
SBI-SGM takes approximately 2 h to accomplish the Bayesian infer-
ence on SGM parameters for all subjects when trained with 100,000
simulation samples.

In fact, the computational bottleneck for SBI-SGM lies in the gen-
eration of the simulation samples, which can effectively leverage the
parallel computing. If the simulation samples are produced, the training
process only takes 0.34 h with 100,000 samples and the inference time
is negligible. Moreover, using a template connectome, as in our case,
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Fig. 4. Cohort level analysis with SBI-SGM across the 36 MEG datasets. A: The median standardized PSDs obtained from SBI-SGM in 10 repetitions under noise SD 1.6 and number
of simulation samples 100,000. The correlations between reconstructed and observed PSDs are between 0.905 and 0.907 in the 10 repetitions. B: Partial correlation between each
pair of parameters averaged over 36 subjects. C: Histograms and the corresponding kernel density estimations of the posterior SGM parameters.
allows the computational cost of SBI-SGM to be amortized, i.e., once
trained, the model can be applied to all subjects without modification.
These features render SBI-SGM more desirable in practice compared
with other methods, such as Ann-SGM and MCMC (Sengupta et al.,
2015, 2016), which require to run the estimation procedure for each
subject and are not easily adaptable to parallel computing.

The primary computational burden in generating simulation sam-
ples stems from the eigen-decomposition of the Laplacian matrix whose
computational complexity is 𝑂(𝑁3), where 𝑁 is the number of ROIs.
During training or inference, the number of ROIs only affects input
dimensionality, and exhibits linear complexity with respect to 𝑁 . Con-
sequently, the total complexity in terms of 𝑁 is 𝑂(𝑁3). In widely-used
atlases (Desikan et al., 2006; Fan et al., 2016), the number of ROIs
remains below 250. Hence, despite the 𝑂(𝑁3) complexity, applying SBI-
SGM to other atlases does not result in an excessive computational
burden.

4. Discussion

Models with complex and stochastic simulators have been exten-
sively applied in many areas of science and engineering (Lueckmann
8

et al., 2021). In neuroscience, such computational models are typically
built via incorporating biological mechanisms and hypothetical intu-
itions to explain the observed phenomena inferred from the neuroimag-
ing data (Gonçalves et al., 2020). These models involve several free
parameters that are required to be compatible with the observed phe-
nomena. Due to the complexity of neural models and neural data, the
determination of the free parameters generally relies on computation-
intensive optimization routines like grid search (Tomm et al., 2011),
genetic algorithm (Van Geit et al., 2016) or simulated annealing (Raj
et al., 2020; Verma et al., 2022a).

However, these algorithms are far from meeting the needs of the
neuroscience community, as they can only provide a single point esti-
mate of the free parameters, and make it difficult to incorporate prior
knowledge about related neural processes. In neural models, it is always
desirable to find out not only the best, but all parameter settings com-
patible with the observed data. The variability of the parameters under
the observation can provide more insights into the neural models and
processes (Gonçalves et al., 2020; Alonso and Marder, 2019). Moreover,
neural model parameters, e.g. of SGM, typically have biological mean-
ing, hence their inference must accommodate the underlying biological
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Fig. 5. PSD representations after vectorizing and mapping the simulated PSDs and 36 observed PSDs to a 2-dimensional embedding manifold with the UMAP. In this instance, we
adopt UMAP to reduce the dimensionality of the vectorized PSD matrix to 2 for visualization purposes.
mechanisms and their constraints, in order to avoid unreasonable solu-
tions. Using the prior knowledge of these biological quantities can not
only increase the optimization efficiency but also robustify the inferred
models. Most importantly, the practical applicability of model fitting
demands a solid assessment of the confidence bounds and variability
associated with fitted parameters — something quite lacking in current
methods. Due to these reasons, full Bayesian inference of posteriors
is preferable to point estimates. However, the intricacy of the neural
models typically results in intractable or complicated likelihood which
makes the likelihood-based inference inaccessible.

Luckily, the SBI approach fills this gap by bypassing the evaluation
of the likelihood function and giving the posterior samples directly. The
results presented in this study have highlighted the key ways in which
the proposed combination of SGM and SBI is exquisitely well-suited to
the task of model inference of neural systems. First, the parsimony of
SGM obviates a key weakness of SBI, which typically prefers to infer
a small set of parameters (Cranmer et al., 2020; Durkan et al., 2019).
For this reason, SBI may be challenging for coupled non-linear models
such as NMMs and the Virtual Brain (Ritter et al., 2013) which consist
of a potentially large set of parameters. Second, SBI requires a large
number of forward-model evaluations to generate enough simulation
samples for training, which would render large coupled NMMs unfea-
sible (Cabral et al., 2014; Sanz-Leon et al., 2015; Cabral et al., 2017;
Siettos and Starke, 2016), but this is far less problematic for SGM due
to its fast forward evaluation. Third, SBI requires far fewer empirical
samples compared to simulation samples (Durkan et al., 2019; Cranmer
et al., 2020), which is an important consideration in real data-poor
medical settings. Lastly, while the training of the neural network re-
quires a high upfront cost involving numerous simulations, the trained
SBI model can be applied almost instantaneously to new empirical
data directly, which enhances the practical utility and amortizes the
computational cost of fitting by front-loading the simulation effort.
9

We were able to show that the SBI-SGM framework gives speedy
estimates of the full posterior distribution, achievable in a matter of
seconds per subject. Using these posteriors, point estimates, e.g. mean
or mode of the posterior, can be quickly produced, which we showed
has comparable performance to prior point estimation methods like
dual annealing, at a fraction of the computation time. Lastly, our
posterior analysis showed that the model parameters were generally
weakly correlated, implying that all of them are required to obtain
model outputs that match the spectral and spatial patterns obtained
from empirical MEG. This is a crucial finding since it suggests that we
can identify unique markers of diseases and brain states in the form of
inferred SGM parameters.

4.1. Relationship to previous works

For models closely related to SGM, such as the non-linear neural
mass models or the dynamic causal models (DCM), Bayesian inferenc-
ing algorithms such as variational Bayes have been used previously.
DCM employs variation Bayes to obtain effective functional connectiv-
ity (Kiebel et al., 2008; Pinotsis et al., 2012). A key difference is that
DCM is primarily used to obtain effective connectivity from smaller
networks and that these connectivities are obtained from second-order
statistics such as cross-spectra using spectral DCM (Pereira et al., 2021).
In contrast, SGM directly computes the PSD rather than individual
elements of the second-order effective connectivity matrix. SGM instead
employs an explicit structure-based model, where the inter-regional
connectivity comes directly from the measured structural connectome.
In this manner, SGM is better suited for SBI than DCM, since the latter
would be required to infer an entire matrix of effective connectivities,
in addition to other regional or global parameters.

The key challenges with inferring parameters of coupled non-linear
neural mass models are that they require time-consuming simulations.
These models exhibit bifurcations yielding discontinuities in the model
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Fig. 6. Performance of SBI and annealing on SGM is comparable. A: Pearson’s correlation of PSD from each ROI and spatial correlation for the alpha frequency band. P-values
are from two-sample t-tests. B: Comparison of the observed and reconstructed spatial distributions from the SBI and annealing algorithms of the alpha frequency band, averaged
over all the subjects.
solutions (Raj et al., 2022), and parameter identifiability is not guar-
anteed (Hartoyo et al., 2019). These challenges have been discussed in
detail elsewhere (Xie et al., 2019; Raj et al., 2022). SGM overcomes
these challenges by providing a closed-form solution that can be simu-
lated within seconds, and by consisting of only a parsimonious set of 7
global model parameters.

Parsimony is an essential feature and motivation of our study,
and indeed the sufficiency of only 7 parameters in SGM to explain
whole brain activity is a powerful, if surprising, concept. This aspect
was dealt with extensively in prior publications on the spectral graph
model (Raj et al., 2020; Verma et al., 2022a; Raj et al., 2022). Here
we offer some pertinent comments. It should be noted that the SGM,
and other graph models like it, seeks a minimal model of brain activity,
with highly circumscribed targets. It does not seek to model the full
complexity of brain activity, but only its power spectrum. In this sense,
it assumes the activity is strictly stationary. Most existing analyses
of MEG activity already rely on stationary features like functional or
effective connectivity, which represent the vast majority of use-cases.

Another potential way to conduct Bayesian inference for SGM is
MCMC methods (Raftery and Lewis, 1996) as SGM has a closed-form
solution in the Fourier frequency domain. However, even under an
explicit frequency domain solution, the likelihood function of SGM can
be complicated (Verma et al., 2022b), which hampers analyzing the
properties of the posterior density. Moreover, MCMC methods require
a long burn-in step to reach the equilibrium distribution and samples
from the equilibrium distribution are correlated. These properties make
sampling from MCMC rather time-consuming for SGM. In addition,
the computational cost of MCMC methods cannot be amortized which
10
means the time-consuming MCMC procedure needs to be run anew for
each observation, regardless of prior observations. A previous MCMC-
based inference was unable to capture the spectral features using a
nonlinear neural mass model (Xie et al., 2019). In comparison, SBI
is more flexible than MCMC methods. Due to the powerful neural
network, it can easily handle the complicated likelihood function. More
importantly, SBI is trained with simulation samples that help to reduce
the requirements of real data. Once the model is trained, it can be
applied to new observations without retraining. Therefore, compared
with MCMC methods, SBI may be preferable for practical Bayesian
inference.

It is worth noting that while this paper focuses on SGM, the SBI
approach can be a robust and efficient alternative for parameter estima-
tion of any complex generative model, e.g. above-mentioned coupled
neural mass or DCM models. The key trade-off involves whether upfront
simulation of a large number of forward model runs is practical and
whether there is a compelling use case for achieving rapid inference of
an unseen observation.

4.2. Limitations of the current approach

In the current inference procedure, our simulator outputs include
the regional PSD and the spatial distribution of alpha band power —
together they form a relatively high-dimensional feature space. While
Algorithm 1 is capable of handling this, the high dimensionality of out-
put features increases the computational burden and causes difficulty
in learning useful information with neural networks from the data.
Although we reported some basic diagnostics in Fig. 4 to verify the
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validity of our inference, the high-dimensional output hampers more
extensive posterior diagnostics. Possible workarounds to deal with this
issue include extracting some key features from the PSD and spatial
distribution manually or embedding a neural network to learn the key
features automatically. More experiments are required in this direction.
Another limitation is the large number of simulation samples required
in SBI-SGM, which slows the inference procedure and increases the
computational burden. The number of required simulation samples can
be dramatically reduced with multi-round inference (Greenberg et al.,
2019) via focusing the training on a particular observation. Although
the trained model loses the generality for other observations, it can
be very useful when we are only interested in one specific observed
dataset.

4.3. Potential applications and future work

In clinical practice, it can sometimes be even more important to
know how accurate our estimate is than simply to know the best point
estimate (Trkulja and Hrabač, 2019). For example, using only point
estimates, it can be difficult to compare computational biomarkers from
different cohorts. Even if two cohorts have very different values of the
biophysical parameters, no statistically robust conclusion can be drawn
without knowing the uncertainty of those estimates. In such cases, SBI-
SGM will be extremely helpful as it gives the posterior distributions
of the parameters which fully captures the uncertainty of estimates.
With posterior distributions, credible intervals and other measures of
uncertainty can be easily obtained. This can also be used to obtain
population-level parameters that are homogeneous across a population
despite the individual variability, which can aid in establishing the
descriptive validity of models like SGM (Bassett et al., 2018). Lastly, it
can also be used to obtain time-varying posteriors of model parameters
that can capture the fast temporal fluctuations in MEG, as has been
done previously using point estimates (Verma et al., 2022b).
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Appendix. Supplementary

A.1. Spectral graph model

Notation. All the vectors and matrices are written in boldface and
the scalars are written in normal font. The frequency 𝑓 of a signal
is specified in Hertz (Hz), and the corresponding angular frequency
𝜔 = 2𝜋𝑓 is used to obtain the Fourier transforms. The connectivity
matrix is defined as 𝐂 = 𝑐𝑗𝑘, where 𝑐𝑗𝑘 is the connectivity strength
between regions 𝑗 and 𝑘, normalized by the row degree.

Mesoscopic model
Given region 𝑘 out of 𝑁 regions, we denote the local excitatory

signal as 𝑥𝑒(𝑡), local inhibitory signal as 𝑥𝑖(𝑡), and the long-range
acroscopic signals as 𝑥𝑘(𝑡). Combining the decay of individual signals,

oupling of excitatory and inhibitory signals as well as input white
aussian noise, the evolution models of 𝑥𝑒(𝑡) and 𝑥𝑖(𝑡) are:

d𝑥𝑒(𝑡)
d𝑡

= −
𝑓𝑒(𝑡)
𝜏𝑒

⋆
(

𝑔𝑒𝑒 𝑥𝑒(𝑡) − 𝑔𝑒𝑖 𝑓𝑖(𝑡) ⋆ 𝑥𝑖(𝑡)
)

+ 𝑝(𝑡) , and, (3)

d𝑥𝑖(𝑡)
d𝑡

= −
𝑓𝑖(𝑡)
𝜏𝑖

⋆
(

𝑔𝑖𝑖 𝑥𝑖(𝑡) + 𝑔𝑒𝑖 𝑓𝑒(𝑡) ⋆ 𝑥𝑒(𝑡)
)

+ 𝑝(𝑡) , (4)

here 𝑓𝑒(𝑡) and 𝑓𝑖(𝑡) are the ensemble average neural impulse response
unction, ⋆ stands for convolution, 𝑝(𝑡) is input noise, parameters
𝑒𝑒, 𝑔𝑖𝑖, 𝑔𝑒𝑖 are neural gain terms, and parameters 𝜏𝑒, 𝜏𝑖 are character-
stic time constants, which are shared for every region 𝑘. We assume
amma-shaped 𝑓𝑒(𝑡) and 𝑓𝑖(𝑡) as

𝑒(𝑡) =
1
𝜏2𝑒

exp
(

−𝑡
𝜏𝑒

)

and 𝑓𝑖(𝑡) =
1
𝜏2𝑖

exp
(

−𝑡
𝜏𝑖

)

.

Macroscopic model
Accounting for long-range connections between brain regions, the

macroscopic signal 𝑥𝑘 is assumed to conform to the following evolution
model:

d𝑥𝑘(𝑡)
d𝑡

= − 1
𝜏𝐺

𝑓𝐺(𝑡)⋆𝑥𝑘(𝑡)+
𝛼
𝜏𝐺

𝑓𝐺(𝑡)⋆
𝑁
∑

𝑗=1
𝑐𝑗𝑘𝑥𝑗 (𝑡−𝜏𝑣𝑗𝑘)+

(

𝑥𝑒(𝑡)+𝑥𝑖(𝑡)
)

, (5)

here, 𝜏𝐺 is the graph characteristic time constant, 𝛼 is the global
oupling constant, 𝑐𝑗𝑘 are elements of the connectivity matrix, 𝜏𝑣𝑗𝑘 is the
elay in signals reaching from the 𝑗th to the 𝑘th region, 𝑣 is the cortico-
ortical fiber conduction speed with which the signals are transmitted.
he delay 𝜏𝑣𝑗𝑘 is calculated as 𝑑𝑗𝑘∕𝑣, where 𝑑𝑗𝑘 is the distance between
egions 𝑗 and 𝑘 and 𝑥𝑒(𝑡) + 𝑥𝑖(𝑡) is the input signal determined from
qs. (3) and (4). The Gamma-shaped 𝑓𝐺(𝑡) is written as

𝐺(𝑡) =
1
𝜏2𝐺

exp
(

−𝑡
𝜏𝐺

)

.

The neural gain 𝑔𝑒𝑒 is kept as 1 to ensure parameter identifiability,
herefore, SGM only includes 7 identifiable parameters as listed in
able 1.

losed-form model solution in the fourier domain
A salient feature of SGM is that it provides a closed-form solution

f brain oscillations under the frequency domain. Let  be the Fourier
ransform at angular frequency 𝜔 = 2𝜋𝑓 . Note that the mesoscopic
odels for different regions share the same parameters, therefore,
ithout loss of generality, we can drop the subscript 𝑘.

The solutions for 𝑥𝑒(𝑡) and 𝑥𝑖(𝑡) under the frequency domain are

𝑒(𝜔) =  (𝑥𝑒(𝑡)) =

{

1 + 𝑔𝑒𝑖𝐹𝑒(𝜔)𝐹𝑖(𝜔)∕𝜏𝑒
𝑗𝜔+𝑔𝑖𝑖𝐹𝑖(𝜔)∕𝜏𝑖

}

𝑃 (𝜔)

𝑗𝜔 + 𝑔 𝐹 (𝜔)∕𝜏 + (𝑔𝑒𝑖𝐹𝑒(𝜔)𝐹𝑖(𝜔))2
= 𝐻𝑒(𝜔)𝑃 (𝜔),
𝑒𝑒 𝑒 𝑒 𝜏𝑒𝜏𝑖(𝑗𝜔+𝑔𝑖𝑖𝐹𝑖(𝜔)∕𝜏𝑖)

https://ida.loni.usc.edu/login.jsp
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Fig. S.1. (A) The PSDs from MEG data and the SBI-SGM with normal and t(3) noises. (B) Pearson’s correlation of PSD from each ROI and spatial correlation for the alpha
frequency band. (C) The kernel density estimations of the posterior SGM parameters under the normal and t(3) noise.
and

𝑋𝑖(𝜔) =  (𝑥𝑖(𝑡)) =

{

1 + 𝑔𝑒𝑖𝐹𝑒(𝜔)𝐹𝑖(𝜔)∕𝜏𝑖
𝑗𝜔+𝑔𝑒𝑒𝐹𝑒(𝜔)∕𝜏𝑒

}

𝑃 (𝜔)

𝑗𝜔 + 𝑔𝑖𝑖𝐹𝑖(𝜔)∕𝜏𝑖 +
(𝑔𝑒𝑖𝐹𝑒(𝜔)𝐹𝑖(𝜔))2

𝜏𝑒𝜏𝑖(𝑗𝜔+𝑔𝑒𝑒𝐹𝑒(𝜔)∕𝜏𝑒)

= 𝐻𝑖(𝜔)𝑃 (𝜔),

where 𝑃 (𝜔), 𝐹𝑒(𝜔), 𝐹𝑖(𝜔), 𝐹𝐺(𝜔) are the Fourier transform of 𝑝(𝑡), 𝑓𝑒(𝑡),
𝑓𝑖(𝑡), and 𝑓𝐺(𝑡) at angular frequency 𝜔.

We define the complex Laplacian matrix (𝜔) = 𝐈 − 𝛼𝐂∗(𝜔) where
𝐂∗(𝜔) = [𝑐𝑖𝑗 exp(−𝑗𝜔𝜏𝑣𝑖𝑗 )]𝑖,𝑗=1,…,𝑁 . The solution of the macroscopic
signals at a angular frequency 𝜔 is

𝐗(𝜔) = [  (𝑥1(𝑡)),… ,  (𝑥𝑁 (𝑡))]T =
(

𝑗𝜔 + 1
𝜏𝐆

𝐹𝐆(𝜔)(𝜔)
)−1

𝐻local(𝜔)𝐏(𝜔),

(6)

where 𝐻local(𝜔) = 𝐻𝑒(𝜔) +𝐻𝑖(𝜔).
From here, we can re-write 𝐗(𝜔) by using the eigendecomposition

of the complex Laplacian matrix (𝜔) which is:

(𝜔) = 𝑼 (𝜔)𝜦(𝜔)𝑼 (𝜔)𝐻 , (7)

where, 𝑼 (𝜔) are the eigenvectors and 𝜦(𝜔) = diag([𝜆1(𝜔),… , 𝜆𝑁 (𝜔)])
consist of the eigenvalues 𝜆 (𝜔),… , 𝜆 (𝜔), at angular frequency 𝜔.
12

1 𝑁
By using the above eigen-decomposition of the Laplacian matrix, the
𝐗(𝜔) can be re-written as:

𝐗(𝜔) =
𝑁
∑

𝑘=1

𝒖𝑘(𝜔)𝒖𝑘(𝜔)H

j𝜔 + 𝜏−1𝐺 𝜆𝑘(𝜔)𝐹𝐺(𝜔)
𝐻local(𝜔)𝐏(𝜔), (8)

where, 𝒖𝑘(𝜔) are the eigenvectors from 𝑼 (𝜔) and 𝜆𝑘(𝜔) are the eigen-
values from 𝜦(𝜔) obtained by the eigen-decomposition of the Laplacian
matrix (𝜔) obtained in Eq. (7). Eq. (8) is the closed-form steady
state solution of the macroscopic signals at a specific angular fre-
quency 𝜔. As SGM provides a closed-form solution 𝐗(𝜔), we can com-
pare the modeled and empirical power spectra to estimate the global
parameters.

A.2. SBI-SGM under the heavy-tailed noise

To investigate the performance of SBI-SGM under the heavy-tailed
noise, we conduct the numerical study with the noise from Student’s t
distribution with degree of freedom 3. We further control the standard
deviation of the noise at 1.6 to compare the results with noise 𝑁(0, 1.62)
in Section 3.4, i.e., the density function of our heavy-tailed noise is
𝑓 (𝑥) ∝ (1+𝑥2∕2.56)−2. Except for the random noise, all the other settings
are identical to the setting in Section 3.4 for the comparison.
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In the 10 repetitions with t(3) noise, the PSD Pearson’s correlation
between the reconstructed and empirical PSDs is changed in [0.9049,
0.9066] which is very similar to the results with the Gaussian noise
([0.905, 0.907] in Section 3.4). We also present the results from the
representative experiment that yields a correlation closest to the mean
level in the 10 repetitions for both noise types in Fig. S.1, including the
reconstructed PSD, the PSD and spatial (in alpha band) correlations and
the posterior densities of the 7 SGM parameters. All the results are very
similar under both noise types.

The comparison between the two error types indicates that the
SBI-SGM is robust to the selection of the noise distribution.

References

Abdelnour, Farras, Dayan, Michael, Devinsky, Orrin, Thesen, Thomas, Raj, Ashish,
2018. Functional brain connectivity is predictable from anatomic network’s
Laplacian eigen-structure. NeuroImage 172, 728–739. http://dx.doi.org/10.1016/j.
neuroimage.2018.02.016, URL https://www.sciencedirect.com/science/article/pii/
S1053811918301046.

Abdelnour, Farras, Voss, Henning U., Raj, Ashish, 2014. Network diffusion accurately
models the relationship between structural and functional brain connectivity net-
works. NeuroImage 90, 335–347. http://dx.doi.org/10.1016/j.neuroimage.2013.12.
039, URL https://www.sciencedirect.com/science/article/pii/S1053811913012597.

Achard, Sophie, Salvador, Raymond, Whitcher, Brandon, Suckling, John, Bull-
more, Ed, 2006. A resilient, low-frequency, small-world human brain func-
tional network with highly connected association cortical Hubs. J. Neu-
rosci. 26 (1), 63–72. http://dx.doi.org/10.1523/JNEUROSCI.3874-05.2006, arXiv:
https://www.jneurosci.org/content/26/1/63.full.pdf URL https://www.jneurosci.
org/content/26/1/63.

Alonso, Leandro M., Marder, Eve, 2019. Visualization of currents in neural models with
similar behavior and different conductance densities. Elife 8.

Alstott, Jeffrey, Breakspear, Michael, Hagmann, Patric, Cammoun, Leila, Sporns, Olaf,
2009. Modeling the Impact of Lesions in the Human Brain. PLoS Comput. Biol. 5
(6), e1000408. http://dx.doi.org/10.1371/journal.pcbi.1000408.

Anon, 2020. MATLAB version 9.8.0.1451342 (R2020a) Update 5. The Mathworks, Inc.,
Natick, Massachusetts.

Bassett, Danielle Smith, Bullmore, Ed, 2006. Small-world brain networks. The Neu-
roscientist 12 (6), 512–523. http://dx.doi.org/10.1177/1073858406293182, PMID:
17079517.

Bassett, Danielle S., Bullmore, Edward T., 2009. Human brain networks in health and
disease. Curr. Opin. Neurol. 22 (4), 340.

Bassett, Danielle S., Zurn, Perry, Gold, Joshua I., 2018. On the nature and use of models
in network neuroscience. Nat. Rev. Neurosci. 19 (9), 566–578.

Breakspear, Michael, 2017. Dynamic models of large-scale brain activity. Nature
Neurosci. 20 (3), 340–352.

Buckner, Randy L., Snyder, Abraham Z., Shannon, Benjamin J., LaRossa, Gina,
Sachs, Rimmon, Fotenos, Anthony F., Sheline, Yvette I., Klunk, William E.,
Mathis, Chester A., Morris, John C., Mintun, Mark A., 2005. Molecular, struc-
tural, and functional characterization of alzheimer’s disease: Evidence for a
relationship between default activity, amyloid, and memory. J. Neurosci. 25 (34),
7709–7717. http://dx.doi.org/10.1523/JNEUROSCI.2177-05.2005, arXiv:https://
www.jneurosci.org/content/25/34/7709.full.pdf.

Bullmore, Ed, Sporns, Olaf, 2009. Complex brain networks: graph theoretical analysis
of structural and functional systems. Nat. Rev. Neurosci. 10 (3), 186–198.

Cabral, Joana, Kringelbach, Morten L., Deco, Gustavo, 2014. Exploring the net-
work dynamics underlying brain activity during rest. Progr. Neurobiol. 114,
102–131. http://dx.doi.org/10.1016/j.pneurobio.2013.12.005, URL https://www.
sciencedirect.com/science/article/pii/S0301008213001457.

Cabral, Joana, Kringelbach, Morten L., Deco, Gustavo, 2017. Functional connectivity
dynamically evolves on multiple time-scales over a static structural connectome:
Models and mechanisms. NeuroImage 160, 84–96. http://dx.doi.org/10.1016/j.
neuroimage.2017.03.045, URL https://www.sciencedirect.com/science/article/pii/
S1053811917302537 Functional Architecture of the Brain.

Chatterjee, Nivedita, Sinha, Sitabhra, 2007. Understanding the mind of a worm:
hierarchical network structure underlying nervous system function in c. ele-
gans. In: Banerjee, Rahul, Chakrabarti, Bikas K. (Eds.), Models of Brain and
Mind. In: Progress in Brain Research, vol. 168, Elsevier, pp. 145–153. http://
dx.doi.org/10.1016/S0079-6123(07)68012-1, URL https://www.sciencedirect.com/
science/article/pii/S0079612307680121.

Cranmer, Kyle, Brehmer, Johann, Louppe, Gilles, 2020. The frontier of simulation-based
inference. Proc. Natl. Acad. Sci. 117 (48), 30055–30062.

Dalal, Sarang S, Zumer, JM, Agrawal, V, Hild, KE, Sekihara, Kensuke, Nagarajan, SS,
2004. NUTMEG: a neuromagnetic source reconstruction toolbox. Neurol. Clin.
Neurophysiol. NCN 2004, 52.

David, Olivier, Friston, Karl J., 2003. A neural mass model for MEG/EEG:: coupling and
neuronal dynamics. NeuroImage 20 (3), 1743–1755. http://dx.doi.org/10.1016/j.
neuroimage.2003.07.015, URL https://www.sciencedirect.com/science/article/pii/
S1053811903004579.
13
Deistler, Michael, Goncalves, Pedro J., Macke, Jakob H., 2022. Truncated proposals
for scalable and hassle-free simulation-based inference. arXiv preprint arXiv:2210.
04815.

Desikan, Rahul S, Ségonne, Florent, Fischl, Bruce, Quinn, Brian T, Dickerson, Brad-
ford C, Blacker, Deborah, Buckner, Randy L, Dale, anders M, Maguire, R Paul,
Hyman, Bradley T, et al., 2006. An automated labeling system for subdividing
the human cerebral cortex on MRI scans into gyral based regions of interest.
NeuroImage 31 (3), 968–980.

Destexhe, Alain, Sejnowski, Terrence J., 2009. The Wilson–Cowan model, 36 years later.
Biol. Cybernet. 101 (1), 1–2.

Durkan, Conor, Bekasov, Artur, Murray, Iain, Papamakarios, George, 2019. Neural
spline flows. Adv. Neural Inf. Process. Syst. 32.

El Boustani, Sami, Destexhe, Alain, 2009. A master equation formalism for macroscopic
modeling of asynchronous irregular activity states. Neural Comput. 21 (1), 46–100.

Fan, Lingzhong, Li, Hai, Zhuo, Junjie, Zhang, Yu, Wang, Jiaojian, Chen, Liangfu,
Yang, Zhengyi, Chu, Congying, Xie, Sangma, Laird, Angela R, et al., 2016. The
human brainnetome atlas: a new brain atlas based on connectional architecture.
Cerebral cortex 26 (8), 3508–3526.

Fischl, Bruce, Salat, David H, Busa, Evelina, Albert, Marilyn, Dieterich, Megan,
Haselgrove, Christian, Kouwe, andre Van Der, Killiany, Ron, Kennedy, David, Klave-
ness, Shuna, Montillo, Albert, Makris, Nikos, Rosen, Bruce, Dale, anders M, 2002.
Whole Brain Segmentation : Automated Labeling of Neuroanatomical Structures in
the Human Brain. Neuron 33, 341–355.

Fornito, Alex, Zalesky, andrew, Breakspear, Michael, 2015. The connectomics of brain
disorders. Nat. Rev. Neurosci. 16 (3), 159–172.

Gabry, Jonah, Simpson, Daniel, Vehtari, Aki, Betancourt, Michael, Gelman, andrew,
2017. Visualization in Bayesian workflow. arXiv preprint arXiv:1709.01449.

Ghosh, A., Rho, Y., McIntosh, A.R., Kötter, R., Jirsa, V.K., 2008. Cortical network
dynamics with time delays reveals functional connectivity in the resting brain.
Cogn. Neurodyn. 2 (2), 115–120.

Gonçalves, Pedro J, Lueckmann, Jan-Matthis, Deistler, Michael, Nonnenmacher, Marcel,
Öcal, Kaan, Bassetto, Giacomo, Chintaluri, Chaitanya, Podlaski, William F, Had-
dad, Sara A, Vogels, Tim P, et al., 2020. Training deep neural density estimators
to identify mechanistic models of neural dynamics. Elife 9, e56261.

Greenberg, David, Nonnenmacher, Marcel, Macke, Jakob, 2019. Automatic poste-
rior transformation for likelihood-free inference. In: International Conference on
Machine Learning. PMLR, pp. 2404–2414.

Haan, Willem de, Mott, Katherine, Straaten, Elisabeth C. W. van, Scheltens, Philip,
Stam, Cornelis J., 2012. Activity Dependent Degeneration Explains Hub Vulnera-
bility in Alzheimer’s Disease. PLoS Comput. Biol. 8 (8), e1002582. http://dx.doi.
org/10.1371/journal.pcbi.1002582.

Hartoyo, Agus, Cadusch, Peter J., Liley, David T.J., Hicks, Damien G., 2019. Parameter
estimation and identifiability in a neural population model for electro-cortical
activity. PLoS Comput. Biol. 15 (5), 1–27. http://dx.doi.org/10.1371/journal.pcbi.
1006694.

He, Yong, Chen, Zhang, Evans, Alan, 2008. Structural insights into aberrant topological
patterns of large-scale cortical networks in alzheimer’s disease. J. Neurosci. 28 (18),
4756–4766. http://dx.doi.org/10.1523/JNEUROSCI.0141-08.2008, URL https://
www.jneurosci.org/content/28/18/4756 arXiv:https://www.jneurosci.org/content/
28/18/4756.full.pdf.

Henderson, Harold V., Searle, S.R., 1979. Vec and vech operators for matrices, with
some uses in Jacobians and multivariate statistics. Canad. J. Statist. 7 (1), 65–81.

Hermundstad, Ann M, Bassett, Danielle S, Brown, Kevin S, Aminoff, Elissa M,
Clewett, David, Freeman, Scott, Frithsen, Amy, Johnson, Arianne, Tipper, Chris-
tine M, Miller, Michael B, et al., 2013. Structural foundations of resting-state and
task-based functional connectivity in the human brain. Proc. Natl. Acad. Sci. 110
(15), 6169–6174.

Hilbe, Joseph M., 2009. Logistic Regression Models. Chapman and hall/CRC.
Honey, Christopher J., Sporns, Olaf, 2008. Dynamical consequences of lesions in cortical

networks. Human Brain Mapping 29 (7), 802–809. http://dx.doi.org/10.1002/hbm.
20579.

Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hag-
mann, P., 2009. Predicting human resting-state functional connectivity from
structural connectivity. Proc. Natl. Acad. Sci. 106 (6), 2035–2040. http://dx.doi.
org/10.1073/pnas.0811168106, URL https://www.pnas.org/content/106/6/2035
arXiv:https://www.pnas.org/content/106/6/2035.full.pdf.

Jenkinson, Mark, Beckmann, Christian F., Behrens, Timothy E.J., Woolrich, Mark W.,
Smith, Stephen M., 2012. FSL. NeuroImage 62 (2), 782–790.

Kiebel, Stefan J, Garrido, Marta I, Moran, Rosalyn J, Friston, Karl J, 2008. Dynamic
causal modelling for EEG and MEG. Cogn. Neurodyn. 2 (2), 121.

Leshno, Moshe, Lin, Vladimir Ya, Pinkus, Allan, Schocken, Shimon, 1993. Multilayer
feedforward networks with a nonpolynomial activation function can approximate
any function. Neural Netw. 6 (6), 861–867.

Llanas, Bernardo, Lantarón, Sagrario, Sáinz, Francisco J, 2008. Constructive approxi-
mation of discontinuous functions by neural networks. Neural Process. Lett. 27 (3),
209–226.

Lueckmann, Jan-Matthis, Boelts, Jan, Greenberg, David, Goncalves, Pedro,
Macke, Jakob, 2021. Benchmarking simulation-based inference. In: International
Conference on Artificial Intelligence and Statistics. PMLR, pp. 343–351.

http://dx.doi.org/10.1016/j.neuroimage.2018.02.016
http://dx.doi.org/10.1016/j.neuroimage.2018.02.016
http://dx.doi.org/10.1016/j.neuroimage.2018.02.016
https://www.sciencedirect.com/science/article/pii/S1053811918301046
https://www.sciencedirect.com/science/article/pii/S1053811918301046
https://www.sciencedirect.com/science/article/pii/S1053811918301046
http://dx.doi.org/10.1016/j.neuroimage.2013.12.039
http://dx.doi.org/10.1016/j.neuroimage.2013.12.039
http://dx.doi.org/10.1016/j.neuroimage.2013.12.039
https://www.sciencedirect.com/science/article/pii/S1053811913012597
http://dx.doi.org/10.1523/JNEUROSCI.3874-05.2006
http://arxiv.org/abs/https://www.jneurosci.org/content/26/1/63.full.pdf
http://arxiv.org/abs/https://www.jneurosci.org/content/26/1/63.full.pdf
http://arxiv.org/abs/https://www.jneurosci.org/content/26/1/63.full.pdf
https://www.jneurosci.org/content/26/1/63
https://www.jneurosci.org/content/26/1/63
https://www.jneurosci.org/content/26/1/63
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb4
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb4
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb4
http://dx.doi.org/10.1371/journal.pcbi.1000408
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb6
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb6
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb6
http://dx.doi.org/10.1177/1073858406293182
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb8
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb8
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb8
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb9
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb9
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb9
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb10
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb10
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb10
http://dx.doi.org/10.1523/JNEUROSCI.2177-05.2005
http://arxiv.org/abs/https://www.jneurosci.org/content/25/34/7709.full.pdf
http://arxiv.org/abs/https://www.jneurosci.org/content/25/34/7709.full.pdf
http://arxiv.org/abs/https://www.jneurosci.org/content/25/34/7709.full.pdf
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb12
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb12
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb12
http://dx.doi.org/10.1016/j.pneurobio.2013.12.005
https://www.sciencedirect.com/science/article/pii/S0301008213001457
https://www.sciencedirect.com/science/article/pii/S0301008213001457
https://www.sciencedirect.com/science/article/pii/S0301008213001457
http://dx.doi.org/10.1016/j.neuroimage.2017.03.045
http://dx.doi.org/10.1016/j.neuroimage.2017.03.045
http://dx.doi.org/10.1016/j.neuroimage.2017.03.045
https://www.sciencedirect.com/science/article/pii/S1053811917302537
https://www.sciencedirect.com/science/article/pii/S1053811917302537
https://www.sciencedirect.com/science/article/pii/S1053811917302537
http://dx.doi.org/10.1016/S0079-6123(07)68012-1
http://dx.doi.org/10.1016/S0079-6123(07)68012-1
http://dx.doi.org/10.1016/S0079-6123(07)68012-1
https://www.sciencedirect.com/science/article/pii/S0079612307680121
https://www.sciencedirect.com/science/article/pii/S0079612307680121
https://www.sciencedirect.com/science/article/pii/S0079612307680121
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb16
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb16
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb16
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb17
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb17
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb17
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb17
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb17
http://dx.doi.org/10.1016/j.neuroimage.2003.07.015
http://dx.doi.org/10.1016/j.neuroimage.2003.07.015
http://dx.doi.org/10.1016/j.neuroimage.2003.07.015
https://www.sciencedirect.com/science/article/pii/S1053811903004579
https://www.sciencedirect.com/science/article/pii/S1053811903004579
https://www.sciencedirect.com/science/article/pii/S1053811903004579
http://arxiv.org/abs/2210.04815
http://arxiv.org/abs/2210.04815
http://arxiv.org/abs/2210.04815
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb20
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb20
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb20
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb20
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb20
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb20
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb20
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb20
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb20
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb21
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb21
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb21
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb22
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb22
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb22
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb23
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb23
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb23
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb24
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb24
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb24
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb24
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb24
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb24
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb24
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb25
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb25
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb25
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb25
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb25
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb25
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb25
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb25
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb25
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb26
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb26
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb26
http://arxiv.org/abs/1709.01449
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb28
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb28
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb28
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb28
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb28
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb29
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb29
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb29
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb29
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb29
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb29
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb29
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb30
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb30
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb30
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb30
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb30
http://dx.doi.org/10.1371/journal.pcbi.1002582
http://dx.doi.org/10.1371/journal.pcbi.1002582
http://dx.doi.org/10.1371/journal.pcbi.1002582
http://dx.doi.org/10.1371/journal.pcbi.1006694
http://dx.doi.org/10.1371/journal.pcbi.1006694
http://dx.doi.org/10.1371/journal.pcbi.1006694
http://dx.doi.org/10.1523/JNEUROSCI.0141-08.2008
https://www.jneurosci.org/content/28/18/4756
https://www.jneurosci.org/content/28/18/4756
https://www.jneurosci.org/content/28/18/4756
http://arxiv.org/abs/https://www.jneurosci.org/content/28/18/4756.full.pdf
http://arxiv.org/abs/https://www.jneurosci.org/content/28/18/4756.full.pdf
http://arxiv.org/abs/https://www.jneurosci.org/content/28/18/4756.full.pdf
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb34
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb34
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb34
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb35
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb35
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb35
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb35
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb35
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb35
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb35
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb35
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb35
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb36
http://dx.doi.org/10.1002/hbm.20579
http://dx.doi.org/10.1002/hbm.20579
http://dx.doi.org/10.1002/hbm.20579
http://dx.doi.org/10.1073/pnas.0811168106
http://dx.doi.org/10.1073/pnas.0811168106
http://dx.doi.org/10.1073/pnas.0811168106
https://www.pnas.org/content/106/6/2035
http://arxiv.org/abs/https://www.pnas.org/content/106/6/2035.full.pdf
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb39
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb39
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb39
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb40
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb40
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb40
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb41
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb41
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb41
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb41
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb41
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb42
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb42
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb42
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb42
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb42
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb43
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb43
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb43
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb43
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb43


NeuroImage 279 (2023) 120278H. Jin et al.

P

P

P

P

R

R

R

R

R

S

S

S

S

Marrelec, Guillaume, Krainik, Alexandre, Duffau, Hugues, Pélégrini-Issac, Mélanie,
Lehéricy, Stéphane, Doyon, Julien, Benali, Habib, 2006. Partial correlation for
functional brain interactivity investigation in functional MRI. NeuroImage 32 (1),
228–237.

McInnes, Leland, Healy, John, Melville, James, 2018. Umap: Uniform manifold ap-
proximation and projection for dimension reduction. arXiv preprint arXiv:1802.
03426.

Muldoon, Sarah Feldt, Pasqualetti, Fabio, Gu, Shi, Cieslak, Matthew, Grafton, Scott T.,
Vettel, Jean M., Bassett, Danielle S., 2016. Stimulation-based control of dynamic
brain networks. PLoS Comput. Biol. 12 (9), 1–23. http://dx.doi.org/10.1371/
journal.pcbi.1005076.

Owen, Julia P., Li, Yi-Ou, Ziv, Etay, Strominger, Zoe, Gold, Jacquelyn, Bukhpun, Polina,
Wakahiro, Mari, Friedman, Eric J., Sherr, Elliott H., Mukherjee, Pratik, 2013. The
structural connectome of the human brain in agenesis of the corpus callosum. Neu-
roImage 70, 340–355. http://dx.doi.org/10.1016/j.neuroimage.2012.12.031, URL
https://www.sciencedirect.com/science/article/pii/S1053811912012165.

Papamakarios, George, Murray, Iain, 2016. Fast 𝜀-free inference of simulation models
with bayesian conditional density estimation. Adv. Neural Inf. Process. Syst. 29.

ark, Hae-Jeong, Friston, Karl, 2013. Structural and functional brain networks: from
connections to cognition. Science 342 (6158).

ereira, Inês, Frässle, Stefan, Heinzle, Jakob, Schöbi, Dario, Do, Cao Tri, Gruber, Moritz,
Stephan, Klaas E., 2021. Conductance-based dynamic causal modeling: A mathe-
matical review of its application to cross-power spectral densities. NeuroImage 245,
118662. http://dx.doi.org/10.1016/j.neuroimage.2021.118662, URL https://www.
sciencedirect.com/science/article/pii/S1053811921009356.

ersson, K., Björkman, M., 1988. Annoyance due to low frequency noise and the use
of the d’B (A) scale. J. Sound Vib. 127 (3), 491–497.

inotsis, Dimitris A., Moran, Rosalyn J., Friston, Karl J., 2012. Dynamic causal modeling
with neural fields. NeuroImage 59 (2), 1261–1274.

aftery, Adrian E., Lewis, Steven M., 1996. Implementing mcmc. Markov chain Monte
Carlo practice 115–130.

aj, Ashish, Cai, Chang, Xie, Xihe, Palacios, Eva, Owen, Julia, Mukherjee, Pratik,
Nagarajan, Srikantan, 2020. Spectral graph theory of brain oscillations. Hum. Brain
Map. 41 (11), 2980–2998, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/
hbm.24991.

aj, Ashish, Verma, Parul, Nagarajan, Srikantan, 2022. Structure-function models
of temporal, spatial, and spectral characteristics of non-invasive whole brain
functional imaging.. Front. Neurosci. 16, 959557.

itter, Petra, Schirner, Michael, McIntosh, Anthony R., Jirsa, Viktor K., 2013. The
virtual brain integrates computational modeling and multimodal neuroimaging.
Brain Connect. 3 (2), 121–145. http://dx.doi.org/10.1089/brain.2012.0120, PMID:
23442172.

ubinov, Mikail, Sporns, Olaf, van Leeuwen, Cees, Breakspear, Michael, 2009. Sym-
biotic relationship between brain structure and dynamics. BMC Neurosci. 10 (1),
1–18.

anz-Leon, Paula, Knock, Stuart A., Spiegler, andreas, Jirsa, Viktor K., 2015. Mathe-
matical framework for large-scale brain network modeling in The Virtual Brain.
NeuroImage 111, 385–430. http://dx.doi.org/10.1016/j.neuroimage.2015.01.002,
URL https://www.sciencedirect.com/science/article/pii/S1053811915000051.

engupta, Biswa, Friston, Karl J., Penny, Will D., 2015. Gradient-free MCMC methods
for dynamic causal modelling. NeuroImage 112, 375–381.

engupta, Biswa, Friston, Karl J., Penny, Will D., 2016. Gradient-based MCMC samplers
for dynamic causal modelling. NeuroImage 125, 1107–1118.

iettos, Constantinos, Starke, Jens, 2016. Multiscale modeling of brain dynamics: from
single neurons and networks to mathematical tools. WIREs Syst. Biol. Med. 8 (5),
438–458. http://dx.doi.org/10.1002/wsbm.1348.
14
Singh, Matthew F., Braver, Todd S., Cole, Michael W., Ching, ShiNung, 2020. Estimation
and validation of individualized dynamic brain models with resting state fMRI.
NeuroImage 221, 117046. http://dx.doi.org/10.1016/j.neuroimage.2020.117046,
URL https://www.sciencedirect.com/science/article/pii/S1053811920305322.

Spiegler, A., Jirsa, V., 2013. Systematic approximations of neural fields through
networks of neural masses in the virtual brain. NeuroImage 83, 704–725. http:
//dx.doi.org/10.1016/j.neuroimage.2013.06.018, URL https://www.sciencedirect.
com/science/article/pii/S1053811913006551.

Strogatz, Steven H., 2001. Exploring complex networks. Nature 410 (6825), 268–276.
Suárez, Laura E., Markello, Ross D., Betzel, Richard F., Misic, Bratislav, 2020. Linking

structure and function in macroscale brain networks. Trends in Cognitive Sciences
24 (4), 302–315. http://dx.doi.org/10.1016/j.tics.2020.01.008, URL https://www.
sciencedirect.com/science/article/pii/S1364661320300267.

Tejero-Cantero, Alvaro, Boelts, Jan, Deistler, Michael, Lueckmann, Jan-Matthis,
Durkan, Conor, Gonçalves, Pedro J., Greenberg, David S., Macke, Jakob H., 2020.
Sbi: A toolkit for simulation-based inference. J. Open Sour. Softw. 5 (52), 2505.
http://dx.doi.org/10.21105/joss.02505.

Tomm, Christian, Avermann, Michael, Vogels, Tim, Gerstner, Wulfram, Petersen, Carl,
2011. The influence of structure on the response properties of biologically plausible
neural network models. BMC Neurosci. 12 (1), 1–2.

Trkulja, Vladimir, Hrabač, Pero, 2019. Confidence intervals: what are they to us,
medical doctors? Croatian Med. J. 60 (4), 375.

van den Heuvel, Martijn P., Mandl, René C.W., Kahn, René S., Hulshoff Pol, Hilleke E.,
2009. Functionally linked resting-state networks reflect the underlying
structural connectivity architecture of the human brain. Hum. Brain
Map. 30 (10), 3127–3141. http://dx.doi.org/10.1002/hbm.20737, URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.20737 arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.20737.

Van Geit, Werner, Gevaert, Michael, Chindemi, Giuseppe, Rössert, Christian, Cour-
col, Jean-Denis, Muller, Eilif B, Schürmann, Felix, Segev, Idan, Markram, Henry,
2016. BluePyOpt: leveraging open source software and cloud infrastructure to
optimise model parameters in neuroscience. Front. Neuroinform. 10, 17.

Verma, Parul, Nagarajan, Srikantan, Raj, Ashish, 2022a. Spectral graph theory of brain
oscillations—-Revisited and improved. NeuroImage 249, 118919. http://dx.doi.org/
10.1016/j.neuroimage.2022.118919, URL https://www.sciencedirect.com/science/
article/pii/S1053811922000490.

Verma, Parul, Nagarajan, Srikantan, Raj, Ashish, 2022b. Stability and dynamics of a
spectral graph model of brain oscillations. Netw. Neurosci. 1–43. http://dx.doi.org/
10.1162/netn_a_00263, arXiv:https://direct.mit.edu/netn/article-pdf/doi/10.1162/
netn_a_00263/2034454/netn_a_00263.pdf.

Wilson, Hugh R., Cowan, Jack D., 1973. A mathematical theory of the functional
dynamics of cortical and thalamic nervous tissue. Kybernetik 13 (2), 55–80.

Xie, Xihe, Kuceyeski, Amy, Shah, Sudhin A, Schiff, Nicholas D, Nagarajan, SS,
Raj, Ashish, 2019. Parameter identifiability and non-uniqueness in connectome
based neural mass models. 480012, bioRxiv.

Xie, Xi He, Stanley, Megan, Damasceno, Pablo F., 2020. Raj-Lab-UCSF/spectrome:
Spectral Graph Model of Neural Dynamics on Connectomes. http://dx.doi.org/10.
5281/zenodo.3620935.

Yang, Genevieve J., Murray, John D., Wang, Xiao-Jing, Glahn, David C., Pearl-
son, Godfrey D., Repovs, Grega, Krystal, John H., Anticevic, Alan, 2016. Functional
hierarchy underlies preferential connectivity disturbances in schizophrenia. Proc.
Natl. Acad. Sci. 113 (2), E219–E228. http://dx.doi.org/10.1073/pnas.1508436113.

Zimmermann, J., Perry, A., Breakspear, M., Schirner, M., Sachdev, P., Wen, W.,
Kochan, N.A., Mapstone, M., Ritter, P., McIntosh, A.R., Solodkin, A., 2018.
Differentiation of Alzheimer’s disease based on local and global parameters in
personalized Virtual Brain models. NeuroImage Clin. 19, 240–251.

http://refhub.elsevier.com/S1053-8119(23)00429-9/sb44
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb44
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb44
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb44
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb44
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb44
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb44
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
http://dx.doi.org/10.1371/journal.pcbi.1005076
http://dx.doi.org/10.1371/journal.pcbi.1005076
http://dx.doi.org/10.1371/journal.pcbi.1005076
http://dx.doi.org/10.1016/j.neuroimage.2012.12.031
https://www.sciencedirect.com/science/article/pii/S1053811912012165
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb48
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb48
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb48
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb49
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb49
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb49
http://dx.doi.org/10.1016/j.neuroimage.2021.118662
https://www.sciencedirect.com/science/article/pii/S1053811921009356
https://www.sciencedirect.com/science/article/pii/S1053811921009356
https://www.sciencedirect.com/science/article/pii/S1053811921009356
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb51
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb51
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb51
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb52
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb52
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb52
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb53
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb53
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb53
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.24991
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.24991
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.24991
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb55
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb55
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb55
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb55
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb55
http://dx.doi.org/10.1089/brain.2012.0120
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb57
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb57
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb57
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb57
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb57
http://dx.doi.org/10.1016/j.neuroimage.2015.01.002
https://www.sciencedirect.com/science/article/pii/S1053811915000051
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb59
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb59
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb59
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb60
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb60
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb60
http://dx.doi.org/10.1002/wsbm.1348
http://dx.doi.org/10.1016/j.neuroimage.2020.117046
https://www.sciencedirect.com/science/article/pii/S1053811920305322
http://dx.doi.org/10.1016/j.neuroimage.2013.06.018
http://dx.doi.org/10.1016/j.neuroimage.2013.06.018
http://dx.doi.org/10.1016/j.neuroimage.2013.06.018
https://www.sciencedirect.com/science/article/pii/S1053811913006551
https://www.sciencedirect.com/science/article/pii/S1053811913006551
https://www.sciencedirect.com/science/article/pii/S1053811913006551
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb64
http://dx.doi.org/10.1016/j.tics.2020.01.008
https://www.sciencedirect.com/science/article/pii/S1364661320300267
https://www.sciencedirect.com/science/article/pii/S1364661320300267
https://www.sciencedirect.com/science/article/pii/S1364661320300267
http://dx.doi.org/10.21105/joss.02505
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb67
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb67
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb67
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb67
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb67
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb68
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb68
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb68
http://dx.doi.org/10.1002/hbm.20737
https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.20737
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.20737
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.20737
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.20737
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb70
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb70
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb70
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb70
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb70
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb70
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb70
http://dx.doi.org/10.1016/j.neuroimage.2022.118919
http://dx.doi.org/10.1016/j.neuroimage.2022.118919
http://dx.doi.org/10.1016/j.neuroimage.2022.118919
https://www.sciencedirect.com/science/article/pii/S1053811922000490
https://www.sciencedirect.com/science/article/pii/S1053811922000490
https://www.sciencedirect.com/science/article/pii/S1053811922000490
http://dx.doi.org/10.1162/netn_a_00263
http://dx.doi.org/10.1162/netn_a_00263
http://dx.doi.org/10.1162/netn_a_00263
http://arxiv.org/abs/https://direct.mit.edu/netn/article-pdf/doi/10.1162/netn_a_00263/2034454/netn_a_00263.pdf
http://arxiv.org/abs/https://direct.mit.edu/netn/article-pdf/doi/10.1162/netn_a_00263/2034454/netn_a_00263.pdf
http://arxiv.org/abs/https://direct.mit.edu/netn/article-pdf/doi/10.1162/netn_a_00263/2034454/netn_a_00263.pdf
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb73
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb73
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb73
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb74
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb74
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb74
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb74
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb74
http://dx.doi.org/10.5281/zenodo.3620935
http://dx.doi.org/10.5281/zenodo.3620935
http://dx.doi.org/10.5281/zenodo.3620935
http://dx.doi.org/10.1073/pnas.1508436113
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb77
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb77
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb77
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb77
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb77
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb77
http://refhub.elsevier.com/S1053-8119(23)00429-9/sb77

	Bayesian inference of a spectral graph model for brain oscillations
	Introduction
	Methods
	Dataset
	Spectral graph model
	Simulation-based inference for SGM
	Implementation details

	Results
	Adding random noise to the SGM improves the reconstructing accuracy of the PSD
	Increasing the number of simulation samples improves the SBI-SGM fit
	Results from two representative MEG data
	Cohort level analysis of MEG datasets
	SBI-SGM and Ann-SGM comparision
	Computational cost of SBI-SGM

	Discussion
	Relationship to previous works
	Limitations of the current approach
	Potential applications and future work

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Supplementary
	Spectral graph model
	Mesoscopic model
	Macroscopic model
	Closed-form model solution in the Fourier domain

	SBI-SGM under the heavy-tailed noise

	References


