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Abstract

Recent revolution in oncology treatment has witnessed emergence
and fast development of the targeted therapy and immunotherapy. In
contrast to traditional cytotoxic agents, these types of treatment tend
to be more tolerable and thus efficacy is of more concern. As a result,
seamless phase I/II trials have gained enormous popularity, which aim
to identify the optimal biological dose (OBD) rather than the maximum
tolerated dose (MTD). To enhance the accuracy and robustness for
identification of OBD, we develop a calibration-free odds (CFO) design.
For toxicity monitoring, the CFO design casts the current dose in
competition with its two neighboring doses to obtain an admissible
set. For efficacy monitoring, CFO selects the dose that has the largest
posterior probability to achieve the highest efficacy under the Bayesian
paradigm. In contrast to most of the existing designs, the prominent
merit of CFO is that its main dose-finding component is model-free and
calibration-free, which can greatly ease the burden on artificial input of
design parameters and thus enhance the robustness and objectivity
of the design. Extensive simulation studies demonstrate that the CFO
design strikes a good balance between efficiency and safety for MTD
identification under phase I trials, and yields comparable or sometimes
slightly better performance for OBD identification than the competing
methods under phase I/II trials.

Keywords
Bayesian method, Dose finding, Maximum tolerated dose, Oncology
trial, Optimal biological dose
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Introduction

In conventional dose finding for oncology treatment, a common
assumption is that both efficacy and toxicity of the drug increase
monotonically with the dose. Traditional phase I clinical trials mainly
focus on toxicity with the goal to determine the maximum tolerated dose
(MTD) based on the target dose-limiting toxicity (DLT) rate (Yin 2012).
However, due to the revolution of the targeted therapy and immunotherapy
in cancer treatment (Paoletti and Postel-Vinay 2018), many new agents in
clinical oncology violate the monotonic dose–efficacy relationship. For
some immunotherapy agents, a higher dose may yield lower efficacy,
which leads to an umbrella-shape dose–efficacy curve (Reynolds 2010).
An example of a plateau-shape efficacy curve can be observed for the
efficacy of PTK/ZK, an orally active inhibitor of vascular endothelial
growth factor receptor tyrosine kinases. Its efficacy initially increases
with the dose but then remains unchanged after reaching a threshold
(Morgan et al. 2003), which results in a plateau-shape curve. It becomes
commonplace to incorporate efficacy evaluation in dose recommendation
for oncology clinical trials. By incorporating both efficacy and toxicity
data, such dose-finding trials are typically referred to as seamless phase
I/II trials, which aim to identify the optimal biological dose (OBD),
defined as the dose with the highest efficacy probability while controlling
the DLT rate (Hoering et al. 2013).

Due to violation of the monotonic dose–efficacy relationship, the
traditional phase I trial designs, such as the “3+3” design (Storer 1989),
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the continual reassessment method (CRM) (O’Quigley et al. 1990) and
non-parametric overdose control (NOC) design (Lin and Yin 2017a), are
not applicable any more. Following the trend of phase I/II trials, abundant
adaptive designs have been proposed to determine the OBD. Gooley et al.
(1994) proposed three two-stage designs for conducting phase I/II trials.
Thall and Russell (1998) developed a parametric Bayesian design for
phase I/II trials, where a trinary variable was adopted to account for both
toxicity and efficacy. As an extension, Thall and Cook (2004) further
modified the logistic model and proposed the efficacy–toxicity (EffTox)
design which outperformed the original method under a wide range of
dose–outcome scenarios. Braun (2002) extended the CRM to monitor
the toxicity and efficacy outcomes simultaneously. Under the Bayesian
framework, Yin et al. (2006) proposed a phase I/II trial design using
the odds ratio of the efficacy and toxicity as a measure of desirability.
Yuan and Yin (2009) developed a Bayesian phase I/II design by jointly
modelling the efficacy and toxicity as time-to-event outcomes. Through
combining the features from CRM and order restricted inference, Wages
and Tait (2015) deveploed a seamless phase I/II adaptive design. Based
on a Bayesian dynamic model, Liu and Johnson (2016) introduced a
robust Bayesian design for monitoring efficacy and toxicity outcomes
simultaneously. Xu et al. (2016) developed a Bayesian two-stage phase
I/II design based on a model adaptation method. By reformulating dose
finding as a Bayesian decision-making problem under several simple
hypotheses, Lin and Yin (2017b) developed a Bayesian interval phase I/II
design, named as STEIN (Simple Toxicity and Efficacy INterval design).
Riviere et al. (2018) adopted a logistic model with a plateau parameter to
investigate drugs with a plateau-shape dose–efficacy relationship in phase
I/II trials. Zhou et al. (2019) developed a utility-based Bayesian optimal
interval design to determine the OBD in phase I/II trials.
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However, all the aforementioned methods either rely upon a parametric
model assumption or require tedious specification of design parameters.
Either misspecification of the model or inappropriate tuning of design
parameters would lead to compromised or even poor trial performance.
Our goal is to develop a model-free and calibration-free approach to
dose finding, which does not require calibration of any essential design
parameters. In general, early stopping rules are not intrinsic part of a
design, which serve as external monitoring schemes for safety and futility.
The model-free and calibration-free features guarantee our design to be
robust and simple for practical use.

Our research is motivated by a collaboration with clinicians on a phase
I dose-escalation study of the CD19 chimetric antigen receptor (CAR)
induced-T-to-natural-killer (ITNK) cell therapy. The objective of the study
was to assess the safety as well as the efficacy of CD19 CAR-ITNK cell
therapy in adult patients with relapsed or refractory diffuse large-B-cell
lymphoma. Three prespecified doses were considered in the trial, 5× 105,
7.5× 105, 10× 105 CAR-ITNK cells/kg body weight. The DLTs were
defined as neurotoxicity or cytokine release syndrome with grade ≥ 3. The
efficacy response would be assessed by the 2014 Lugano classification
for non-Hodgkin’s lymphoma (Cheson et al. 2014). A related phase I/II
trial for the CAR-NK cell therapy in patients with relapsed or refractory
CD19-positive cancer had been conducted under a similar protocol (Liu
et al. 2020), which also investigated three doses: 1× 105, 1× 106, 1× 107

cells/kg. Applying the EffTox design (Thall and Cook 2004) by jointly
evaluating the bivariate outcomes, the trial concluded that the MTD
was not reached and 73% of patients responded to treatment with no
major toxic effect. Given only three dose levels under investigation, it is
challenging to apply a model-based design because parametric regression
may not fit the data well.
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Another motivating example is a phase I/II trial of lenalidomide in
combination with high-dose melphalan for patients with relapsed or
progressive multiple myeloma (Shah et al. 2015). There were four doses of
lenalidomide in the dose escalation phase: 25, 50, 75 and 100 mg, while
the dose of melphalan was fixed. The goal of the trial was to identify
the OBD of lenalidomide in terms of the trade-off between toxicity
and efficacy. The DLTs were defined as regimen-related death, graft
failure, grade 3 or 4 atrial fibrillation as well as the grade 4 deep venous
thrombosis or pulmonary embolism before day 30 after the autologous
hematopoietic stem cell transplantation (auto-HCT). The efficacy outcome
was defined as being alive in complete response on day 90 after auto-HCT.

The major difficulty in these phase I/II studies is to determine the
shapes of dose–efficacy and dose–toxicity curves without adequate prior
information. The model-based dose-finding designs may be at risk of
violation of parametric assumptions and thus lead to unreliable dose
assignment and incorrect OBD identification. Further, most of the existing
phase I/II designs require calibration of certain design parameters prior to
the implementation. However, due to a lack of preclinical information in
the first-in-human study, it is challenging to specify the design parameters
suitable for such phase I/II designs. To avoid the potential risk of model
misspecification and alleviate the burden of parameter calibration, we
propose a calibration-free odds (CFO) design to identify the OBD. The
CFO design bypasses all the parametric model assumptions, which is thus
model-free or curve-free. Before the dose assignment for each new cohort
of patients, CFO casts the current dose level in competition with its two
neighboring (left and right) dose levels based on evidence in the form of
odds to determine an admissible set. An incoming cohort is then assigned
to the dose level that has the largest posterior probability to achieve the
highest efficacy rate among the dose levels in the admissible set. The CFO
design is calibration-free in the sense that its implementation does not
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require prespecification of any essential design parameter except for the
target DLT rate ϕ and the minimal acceptable efficacy rate ψ which are the
external rather than intrinsic part of the design. When only considering the
toxicity outcomes, the CFO design can also be applied to a phase I trial
focusing on the MTD identification. Extensive simulation studies show
that CFO delivers robust performance and the operating characteristics
are satisfactory compared with existing phase I and phase I/II trial designs
for both MTD and OBD identification tasks.

The rest of the paper is organized as follows. In the next section, we
introduce the CFO design for both MTD and OBD identification. We then
present the simulation studies to evaluate the operating characteristics of
the new method and compare CFO with several phase I and phase I/II
designs in Simulation Studies section. An application to the phase I/II trial
of lenalidomide is provided in Real Trial Application section. The paper
is concluded with some discussion.

Methodology of the CFO Design

Identification of the MTD

Suppose that a clinical trial is initiated to investigateK dose levels with the
monotonically increasing DLT rates, p1 < · · · < pK . The corresponding
efficacy probabilities of the K doses are denoted by {qk}Kk=1, which do
not satisfy any monotonic assumption. Let ϕ be the target DLT rate of
the trial, and let di be the dose level at which the ith cohort of patients is
treated.

After enrolling n cohorts of patients, we observe the cumulative data,
Dn = {(xk, yk,mk)}Kk=1, where the triplet (xk, yk,mk) represents the
numbers of observed DLTs, efficacy outcomes and patients at dose level k,
respectively. Given the nth cohort treated at dose level dn, the DLT rates of
dose levels (dn − 1, dn, dn + 1) are denoted as (pL, pC , pR) based on their
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left, central, and right positions, and (xL, xC , xR) and (mL,mC ,mR) are
the corresponding number of DLTs and number of patients, respectively.

We first illustrate the CFO design for a phase I trial, which aims to
determine the MTD of the drug and its dose level satisfies

kMTD = argmink=1,...,K |pk − ϕ| .

Upon observing the cumulative data Dn with the enrolled n cohorts, we
need to determine the dose level for the (n+ 1)th cohort of patients. We
define the odds of pk > ϕ as

Ok =
Pr(pk > ϕ|xk,mk)

Pr(pk ≤ ϕ|xk,mk)

for k = L,C,R corresponding to left, current/central and right doses. The
reciprocal Ōk = 1/Ok represents the odds of pk ≤ ϕ. Under the Bayesian
paradigm, a noninformative Beta(ϕ, 1− ϕ) prior distribution is adopted
for each DLT probability pk.

Intuitively, the oddsOk measures the evidence in favor of pk > ϕ. When
Ok is large, the corresponding dose level is unlikely to be selected for the
(n+ 1)th cohort due to its over-toxicity. As shown in the left panel of
Figure 1, the odds of pC > ϕ is so large that we know the corresponding
dose level dn is overly toxic. Similarly, the odds Ōk represents the
evidence in favor of pk ≤ ϕ and a large value of Ōk indicates that the
corresponding dose is overly tolerable.

The key issue for dose finding is to determine how large the value
of Ok (or Ōk) is adequate in order to claim the dose is overly toxic
(or safe), which triggers the dose movement. Without introducing any
design parameter, we make the current dose level compete against its two
neighboring dose levels and aggregate the comparison results to select the
next dose level.
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Specifically, a large value of OC means the current dose dn is overly
toxic, while a large value of ŌL indicates that dose level dn − 1 is overly
safe (too low). This situation is similar to a combat between two game
players, while one tries to push the dose down and the other tries to push
the dose up. If OC/ŌL is large, it indicates the evidence in OC is stronger
than that in ŌL, as the case shown in the left panel of Figure 1, so we
should de-escalate the dose; otherwise as shown by the case in the right
panel of Figure 1, it suggests that the information supports dose dn − 1 is
overly safe, and thus de-escalation is not the appropriate move. Therefore,
by comparing the ratio OC/ŌL with some threshold value γL, we can
obtain a vote between de-escalation and staying at the current dose dn.

In addition, when making OC compete with ŌL, we further take the
monotonic relationship pL < pC into consideration. By accounting for
such monotonicity, the marginal posterior density functions for pL and
pC can be derived,

fL(pL|xL, xC) ∝ fβ(pL; aL, bL)

∫ 1

pL

fβ(pC ; aC , bC) dpC

fC(pC |xL, xC) ∝ fβ(pC ; aC , bC)

∫ pC

0

fβ(pL; aL, bL) dpL,

where fβ(·; ak, bk) is the density function of Beta(ak, bk), with ak = ϕ+

xk and bk = 1− ϕ+mk − xk for k = L,C, i.e., the posterior distribution
of pk given the data (xk,mk) without incorporating the monotonic
relationship. The odds OC and ŌL can be obtained via numerical
integration using the Gaussian quadrature or the Monte Carlo method.

The essential step is to choose a suitable threshold γL in a totally data-
driven manner. We denote the true values of pL and pC as p0L and p0C ,
respectively. Intuitively, if p0C = ϕ and p0L < ϕ, we should avoid de-
escalation, i.e., we prefer to the threshold satisfying γL ≥ OC/ŌL; while if
p0L = ϕ and p0C > ϕ, then de-escalation is more desirable, i.e., we prefer
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to γL < OC/ŌL. Following this principle, we propose to minimize the
probability of the incorrect vote to obtain γL,

VL(γL)

= Pr(OC/ŌL > γL|p0C = ϕ, p0L < ϕ)

+Pr(OC/ŌL ≤ γL|p0L = ϕ, p0C > ϕ)

=

mC∑
i=0

mL∑
j=0

I(OC/ŌL > γL) Pr(xC = i|p0C = ϕ) Pr(xL = j|p0L < ϕ)

+

mC∑
i=0

mL∑
j=0

I(OC/ŌL ≤ γL) Pr(xC = i|p0C > ϕ) Pr(xL = j|p0L = ϕ),

where I(·) is the indicator function.

Given p0C = ϕ and p0L = ϕ, it is obvious that

Pr(xC = i|p0C = ϕ) =
(
mC

i

)
ϕi(1− ϕ)mC−i,

Pr(xL = j|p0L = ϕ) =
(
mL

j

)
ϕj(1− ϕ)mL−j.

We adopt a Uniform(0, ϕ) prior distribution for p0L when p0L < ϕ, and a
Uniform(ϕ, 2ϕ) prior distribution for p0C when p0C > ϕ. Thus, Pr(xL =

j|p0L < ϕ) and Pr(xC = i|p0C > ϕ) can be calculated via the Gaussian
quadrature,

Pr(xL = j|p0L < ϕ) =
∫ ϕ

0
1
ϕ

(
mL

j

)
pj0L(1− p0L)

mL−j dp0L,

Pr(xC = i|p0C > ϕ) =
∫ 2ϕ

ϕ
1
ϕ

(
mC

i

)
pi0C(1− p0C)

mC−i dp0C .

Prepared using sagej.cls



Jin and Yin 11

With a similar discussion of ŌC/OR on the right side of the current
dose, we can derive another threshold value γR by minimizing

VR(γR)

= Pr(ŌC/OR > γR|p0C = ϕ, p0R > ϕ)

+Pr(ŌC/OR ≤ γR|p0R = ϕ, p0C < ϕ)

=

mC∑
i=0

mR∑
j=0

I(ŌC/OR > γR) Pr(xC = i|p0C = ϕ) Pr(xR = j|p0R > ϕ)

+

mC∑
i=0

mR∑
j=0

I(ŌC/OL ≤ γR) Pr(xC = i|p0C < ϕ) Pr(xR = j|p0R = ϕ),

and attain the vote of staying at the same dose or escalation. The two votes
are then aggregated together to determine the dose level for the (n+ 1)th
cohort, based on the decision rule summarized in Table 1.

Given the target ϕ, the two thresholds γL and γR are functions of
(mL,mC) and (mC ,mR) respectively. For ease of implementation, we can
calculate the values of (γL, γR) beforehand as shown in Figure 2, where
the values of (γL, γR) vary from 1 to 30 under ϕ = 0.3. In general, the
value of γR is larger than that of γL. The value of γL typically falls in
the range between 0 and 1 which tends to be smaller for mC < mL, while
γR mainly falls between 0 and 2.2 and its value tends to be larger for
mC > mR.

Under the dose movement rule in Table 1, the CFO design for MTD
identification is described as follows.

(i) Start the trial by treating the first cohort of patients at the lowest dose
or a prespecified initial dose.

(ii) After enrolling n cohorts, compute the ratios of odds between the
central dose versus the left and the central dose versus the right,
(OC/ŌL, ŌC/OR).
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(iii) Select the dose for the next cohort following the rules in Table 1.

(iv) Repeat steps (ii) and (iii) until the maximal sample size is reached or
the early stopping criteria are met.

Table 1 includes the case with OC/ŌL > γL and ŌC/OR > γR, i.e.,
the information from two odds ratios is contradictory with each other;
the former suggests dose de-escalation while the latter suggests dose
escalation. Although such case may happen theoretically, it is rarely
encountered in practice. In our simulation studies with random scenarios,
there is no occurrence of such event over more than 10000 repetitions.

Identification of the OBD

As an essential part of the outcomes collected in phase I/II trials, efficacy
data need to be incorporated in dose finding under the CFO design. Upon
the arrival of the (n+ 1)th cohort of patients, CFO adopts two steps to
determine the dose level for the new cohort. An admissible set An is first
determined via the dose escalation rules for the MTD in Table 1:

• If the decision is to de-escalate the dose, then An = {1, . . . , dn − 1};
• If the decision is to stay at the current dose, then An = {1, . . . , dn}.
• If the decision is to escalate the dose, then An = {1, . . . , dn + 1}.

The admissible set is constructed using toxicity data alone and no
dose skipping is allowed during dose escalation, while dose skipping is
permitted for dose de-escalation due to jointly modelling both toxicity
and efficacy data.

Given the current dataDn, we select from the admissible set An the next
dose level dn+1 which has the maximal posterior probability to yield the
highest efficacy,

dn+1 = argmaxk∈An
Pr

(
qk = max

j∈An

{qj}|Dn

)
. (1)
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We adopt Jeffreys’ prior Beta(0.5, 0.5) distribution for each qk, so that the
observed data dominate the posterior estimation. We use the Monte Carlo
method to calculate Pr (qk = maxj∈An{qj}|Dn) for k ∈ An. Specifically,
we first generate 10000 random samples {(q̃(i)k )k∈An}10000i=1 from the
distribution of (qk|Dn)k∈An , and then calculate the empirical probability
of q̃(i)k being the largest among (q̃

(i)
j )j∈An .

Following the above dose movement decisions when accounting for
both toxicity and efficacy, the proposed phase I/II dose-finding procedure
for the OBD proceeds as follows.

(i) Start the trial by treating the first cohort of patients at the lowest dose
or a prespecified initial dose.

(ii) After enrolling n cohorts, determine the admissible set An via the
dose escalation rule for the MTD.

(iii) The dose level for the next cohort is determined by (1).

(iv) Repeat steps (ii) and (iii) until the maximal sample size is reached or
the early stopping criteria are met.

At the beginning of the trial, there is no information for the neighboring
dose levels, while the CFO design can still work normally because we
assign non-informative priors to the DLT and efficacy rates of each
dose. An example in Appendix C.3 demonstrates how CFO works at the
beginning of a trial.

Early Stopping and Final Selection

During the implementation of the CFO design, it is preferable to impose
some early stopping criteria to ensure the safety and benefit for the
patients. For toxicity monitoring, we eliminate the dose level when
there is strong evidence to corroborate its over-toxicity. In particular, we
eliminate dose level k and all the dose levels above from the trial if
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Pr (pk > ϕ|xk,mk ≥ 3) > 0.95. If the posterior probability of the lowest
dose level satisfies Pr(p1 > ϕ|x1,m1 ≥ 3) > 0.95, then we terminate the
entire trial for safety.

For the phase I/II trial design, we further consider the efficacy data
to terminate the trial early if none of the admissible dose levels shows
adequate efficacious effect. Given the lowest acceptable efficacy rate ψ,
the trial would be terminated early for futility if Pr(qk < ψ|yk,mk ≥ 3) >

0.9 for all the admissible dose levels.

In our simulation studies and real data application, the two cutoff values
for toxicity and efficacy early stopping are set as 0.95 and 0.9 respectively,
which yield satisfactory performances. Nevertheless, the cutoff values can
be adopted to meet practical needs in real trials. For selecting a suitable
cutoff value for toxicity, we can randomly generate a large number of
over-toxic scenarios without an MTD as well as typical scenarios with an
MTD using the scheme in Section B of Appendix. The CFO design is then
applied to these scenarios to choose a cutoff value that strikes a balance for
the non-selection rates between both types of scenarios. A similar strategy
can be applied to selecting the cutoff value for futility stopping.

After the trial is completed, to guarantee the monotonically increasing
trend of the dose–toxicity curve, an isotonic regression (Bril et al. 1984) is
performed on the observed DLT rates to obtain the final estimates {p̂k}Kk=1

through the pool-adjacent-violators algorithm. In a phase I trial searching
for the MTD, the MTD level kMTD is selected as

kMTD = argmink=1,...,K |p̂k − ϕ|.

In a phase I/II trial searching for the OBD, the OBD level kOBD is
determined as

kOBD = argmaxk≤kMTD
Pr

(
qk = max

j≤kMTD

{qj}|D
)
.
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where D is the observed data throughout the trial.

Simulation Studies

Toxicity Evaluation Under Random/Fixed Scenarios

As determination of the MTD is an essential part of the CFO design,
we first conduct extensive simulation studies in the context of identifying
the MTD. We compare CFO with BOIN (Liu and Yuan 2015) and CRM
(O’Quigley et al. 1990). The target DLT rate is ϕ = 0.33 and there are five
dose levels under investigation with the maximum sample size of 30 and
a cohort size of 3. For the BOIN method, we adopt the default parameters
suggested in the original paper. Following Lin and Yin (2017a, 2018), the
CRM takes the power model formulation, pk = a

exp(α)
k , where the skeleton

ak is chosen by the model calibration method of Lee and Cheung (2009)
with a halfwidth of the indifference interval of 0.05 and the initial guess of
MTD at dose level ⌈K/2⌉. The detailed settings of the compared methods
are given in Appendix A.1 and we also discuss selection of the halfwidth
of the indifference interval for the CRM in Appendix C.2. To avoid cherry-
picking cases, we randomly generate dose–toxicity scenarios following
Paoletti et al. (2004). The detailed scheme on generating the phase I
scenarios is presented in Appendix B.1. The average probability difference
around the target is controlled at 0.05, 0.07, 0.1 and 0.15 respectively, and
under each configuration, we replicate 5000 simulations.

Six performance statistics are used to assess the operating characteristics
of the three designs. The two main measurements, reflecting the accuracy
and efficiency of a design, are the percentage of MTD selection and
the percentage of patients treated at the MTD, for which the larger the
better. The remaining four measurements quantify the safety aspects of a
trial, which include the percentage of trials of selecting overdoses as the
MTD, the percentage of patients allocated to overdoses, the risk of high
toxicity (defined as the percentage of trials leading to the DLT rates greater
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than ϕ), and the percentage of patients experiencing DLT. A design with
smaller values of these four safety statistics are considered more ethical
and desirable.

The results on the MTD identification are shown in Figure 3. When the
average probability difference around the target increases, all the three
methods lead to better performances in terms of the six measurements
because the MTD is more easily distinguishable from its neighboring
doses. In terms of the two main measurements on accuracy and efficiency,
the CRM design performs the best, while the CFO method ranks the
second. The gap diminishes when the average probability difference
around the target increases. When the average probability difference is
0.15, the CFO design yield the highest percentage of the MTD allocation.
Regarding the four safety measurements, the CFO design yields the best
performance and CRM appears to be the most aggressive, as it yields
significantly higher percentages in the four safety metrics.

To better evaluate the characteristics of CFO, BOIN and CRM, we
further investigate the operating characteristics of the three designs under
six fixed representative dose–toxicity scenarios. The metrics of evaluation
are the percentage of MTD selection, the number of patients allocated
to each dose level and the percentage of patients experiencing DLT.
For consistent comparisons, we adopt the same settings as the random
scenarios. We also include the non-parametric optimal design as the
benchmark (O’quigley et al. 2002; Wages and Varhegyi 2017), for which
the non-selection rule is incorporated for a fair comparison. For each
scenario, we replicate 5000 simulations and summarize the results in
Table 2. Overall, the two algorithm-based methods, CFO and BOIN, yield
more robust performances across the six scenarios. In particular, CFO
performs slightly better than BOIN in terms of both the MTD selection
and patient allocation in the first five scenarios. The model-based CRM
appears to be sensitive to the parametric modeling structure, i.e., the
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matching between the model skeleton and the truth. For example, in
scenario 3 where the truth is close to the CRM model skeleton, the CRM
performs better than the other two methods with an increment of around
3% in the MTD selection percentage. However, in scenario 4 where the
model skeleton seriously deviates from the truth, the performance of the
CRM deteriorates dramatically and there is a gap of around 10% in the
percentage of MTD selection between CRM and the other two methods.
In addition, the CRM design tends to select an over-toxic dose as the
MTD, which is consistent with our observation in the random scenario
setting. In the over-toxic scenario (scenario 6), the BOIN design has the
best performance.

We also investigate the influential factors which affect the result of the
dose-finding trial in terms of the percentage of MTD selection via the
analysis of variance (ANOVA) method used by Cangul et al. (2009) in
Appendix C.1. The results also indicate that the CFO design strikes a good
balance between efficiency and safety in our settings.

Toxicity and Efficacy Evaluation Under Random/Fixed Scenarios

We further compare the CFO design for identification of the OBD with
the WT design (Wages and Tait 2015), STEIN (Lin and Yin 2017b) and
model adaptation (MADA) design (Xu et al. 2016) in phase I/II clinical
trials. We consider K = 5 dose levels with the maximal sample size of
60 and a cohort size of 3. The target DLT rate is ϕ = 0.3, while the
minimal acceptable efficacy rate is set as ψ = 0.3. The detailed settings of
the MADA, STEIN and WT designs are given in Appendix A.2. Among
the three competitors, the WT design is a model-based method, and the
STEIN design is a model-free method, while the MADA design is an
adaptive method which can switch between beta–binomial and regression
models.
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To assess the four designs comprehensively, we evaluate them under the
randomly generated phase I/II scenarios. We first consider the umbrella-
shape and plateau-shape dose–efficacy curves separately, and then we mix
the two types of curves together to show the overall performance of the
four designs. For the dose–toxicity curve, we still follow the generation
method of Paoletti et al. (2004) and control the average probability
difference around ϕ at 0.05, 0.07, 0.1 and 0.15 respectively. Under each
configuration, we replicate 5000 simulated trials. The detailed scheme on
generating the phase I/II scenarios is given in Appendix B.2.

The comparison mainly focuses on two important metrics: the
percentages of OBD selection and OBD allocation. The results under the
random scenarios are presented in Figure 4. The top row of Figure 4 shows
the percentages of the OBD selection and allocation for the umbrella-
shape scenarios. Among the four methods, MADA has the overall best
performance in the OBD selection percentage, while CFO also shows
satisfactory results. The WT design performs the best when the probability
difference is 0.15, while its performance deteriorates when the probability
difference shrinks. In terms of the OBD allocation, the performance of
MADA is much worse than its counterparts, because MADA has two
stages and in stage one it only considers toxicity. The STEIN design
has the highest OBD allocation percentage among the four methods. The
results of the plateau-shape curve are presented in the middle row of
Figure 4. The CFO design has the best performance in terms of the OBD
selection in general, while MADA is clearly worse than other methods.
The WT design shows a similar trend to that under the umbrella-shape
curve, i.e., the relative performance deteriorates when the probability
difference is diminished. With regard to the OBD allocation, the results
are similar to those under the umbrella-shape curves. We then combine
results for both types of curves at the bottom of Figure 4. Overall, the CFO
design has the highest OBD selection percentage when the probability
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difference is not very large. The performance of the WT design varies
dramatically, as it performs the best when the probability difference
is 0.15, but almost worst when the probability difference is 0.05. The
results under the random scenarios demonstrate the robustness of the CFO
design. It is model-free and calibration-free, and thus it yields satisfactory
performance under different settings.

We further assess the four designs under six fixed scenarios as shown in
Figure 5, which include the plateau-shape (scenarios 1 and 2), umbrella-
shape (scenarios 3 and 4) and monotone increasing (scenario 5) dose–
efficacy relationships as well as the over-toxic (scenario 6) case. We adopt
the same settings as the random scenarios and report the percentage of
OBD selection and the number of patients allocated to each dose level
as well as the percentage of patients experiencing DLT, the percentage
of patients showing efficacy outcomes and the non-selection rate (i.e.,
the percentage of trials that do not select any dose as the OBD). To
facilitate the comparison, we also add the non-parametric optimal design
(O’quigley et al. 2002; Cheung 2014; Mozgunov et al. 2020) as the
benchmark. Under each scenario, we carry out 5000 repetitions and
Table 3 summarizes the simulation results.

In scenarios 1 and 2 where the dose–efficacy curves are plateau-shape,
the WT design yields the highest percentage of OBD selection while CFO
ranks the second. The CFO design has a relatively small percentage of
DLT in scenario 1 and the WT design appears to be the safest in scenario
2. The MADA design also leads to satisfactory results for the two plateau-
shape scenarios. The STEIN design performs well in scenario 2 but poorly
in scenario 1.

Under the umbrella-shape dose–efficacy curves corresponding to
scenarios 3 and 4, similarly, the WT performs the best in terms of the
OBD selection while CFO yields the second highest percentage of OBD
selection. With regard to the safety, the WT design yields the best result
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in scenario 3 and CFO has the smallest percentage of DLT in scenario 4.
The MADA and STEIN designs also demonstrate satisfactory results, but
they are consistently worse than the CFO and WT designs. In scenario 5
where the MTD and OBD are identical, MADA has a significantly higher
percentage of OBD selection than the other three designs, while CFO still
delivers a decent performance in comparison with the WT and STEIN
methods. The WT design performs rather poorly under this scenario,
which may be due to the model misspecification because it is a model-
based method. When all the dose levels are overly toxic as in scenario 6,
CFO leads to the highest non-selection rate, while the performances of
STEIN and WT are comparable. The MADA design has an extremely low
non-selection rate and it selects the first dose level for most of the times,
which is due to the fact the MADA design has no early stopping rule for
futility. In the first five scenarios, there are large gaps between the four
designs and the non-parametric optimal benchmark. Under the over-toxic
scenario, the CFO, STEIN and WT designs have comparable results with
the benchmark.

Aggregating results under both the random and fixed scenarios, it
can be concluded that overall the WT and CFO designs perform the
best in phase I/II trials. However, the performance of the WT design
depends on the scenarios which may yield rather poor performance under
some specific cases due to the potential risk of assuming a model-based
structure. Because of its model-free and calibration-free nature, the CFO
design leads to a more robust performance in the OBD-identification
task in contrast to the other three methods. Although the STEIN design
is also a model-free approach, it still requires to specify some design
parameters, and thus it is still sensitive to certain dose–response scenarios.
The performance of the MADA design varies dramatically as the scenarios
change and it yields fairly low percentages of the OBD allocation because
it is a two-stage design.
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Real Trial Application

As an illustration, we apply the proposed CFO to redesign the
aforementioned phase I/II trial of lenalidomide in combination with
the high-dose melphalan. The trial enrolled a total of 57 patients
with relapsed or progressive multiple myeloma (Shah et al. 2015).
Patients were sequentially assigned to one of the four prespecified
doses of lenalidomide {25, 50, 75, 100} mg, while the dose of
melphalan was fixed. Based on the observed data in the trial,
the estimated DLT and efficacy rates were {(p1, q1), . . . , (p4, q4)} =

{(0.02, 0.03), (0.02, 0.02), (0.04, 0.17), (0.04, 0.16)}.

We rerun this trial on the basis of the estimated DLT and efficacy
rates using the CFO design, for which we set the target DLT rate as
ϕ = 0.2 and the minimal acceptable efficacy rate as ψ = 0.15. Patients
were treated with a cohort size of 3. As illustrated by the trial conduct
in Figure 6, the first cohort was treated at dose level 1, and there
was no DLT or efficacy outcome observed. It yielded ŌC/OR = 4.44 >

γR = 0.02, A1 = {1, 2} and {Pr(qk = maxj=1,2{qj})}2k=1 = (0.19, 0.81).
Thus, the next cohort was treated at dose level 2, and again there was
no DLT or efficacy outcome. Consequently, the trial escalated to dose
level 3, where we observed one efficacy response but no DLT. We
obtained (OC/ŌL, ŌC/OR) = (0.00, 4.44) and (γL, γR) = (0.14, 0.02),
which led to A3 = {1, 2, 3, 4} and {Pr(qk = maxj=1,2,3,4{qj})}4k=1 =

(0.05, 0.05, 0.34, 0.56). As a result, dose level 4 was selected for
the next cohort. The two subsequent cohorts were both treated
at dose level 4 and there was no DLT outcome while two
efficacy responses were observed. We obtained OC/ŌL = 0.00 ≤
γL = 0.196, A5 = {1, 2, 3, 4} and {Pr(qk = maxj=1,2,3,4{qj})}4k=1 =

(0.07, 0.06, 0.45, 0.42). Therefore, the trial de-escalated to dose level
3, where the next four cohorts were all treated. Among those four
cohorts, no DLT outcome was observed and five efficacy responses
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occurred, which yielded a small left-side odds ratio OC/ŌL =

0.00 and a large right-side odds ratio ŌC/OR = 3.43× 105. As
a result, the admissible set was A10 = {1, 2, 3, 4} with {Pr(qk =
maxj=1,2,3,4{qj})}4k=1 = (0.07, 0.07, 0.41, 0.46). Again, the next four
cohorts were all assigned to dose level 4, where two DLTs and
three efficacy outcomes occurred. After 14 cohorts were treated,
we had OC/ŌL = 0.00 ≤ γL = 0.26, A14 = {1, 2, 3, 4} and {Pr(qk =
maxj=1,2,3,4{qj})}4k=1 = (0.09, 0.09, 0.53, 0.30), and the trial de-escalated
to dose level 3. Following the same procedure, the remaining five cohorts
were treated back and forth either at dose level 3 or 4. Finally, upon the
completion of the trial, the observed data were

Patient : {m1,m2,m3,m4} = {3, 3, 27, 24},

DLT : {x1, x2, x3, x4} = {0, 0, 1, 2},

Efficacy : {y1, y2, y3, y4} = {0, 0, 6, 5},

which led to {Pr(qk = maxj=1,2,3,4{qj})}4k=1 = (0.14, 0.15, 0.38, 0.32).
Thus, we selected dose level 3 (i.e., the dose of 75 mg) as the OBD for
this trial, because it yielded the highest efficacy with tolerated toxicity
among the four doses.

Discussion

We have proposed a new calibration-free odds design for phase I/II
clinical trials to find the OBD for the targeted therapy and immunotherapy
treatments. Identification of the MTD is a by-product of the CFO design,
if we monitor the toxicity alone. Unlike other methods which monitor
the toxicity data by considering either the current dose level only (e.g.,
the 3 + 3 and BOIN designs) or all dose levels (e.g., the CRM), our
method adopts the game competition idea which compares the evidence
supporting the current dose with that of its two neighboring doses. Similar
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to a two-player game, one tries to push the dose up and the other tries to
push it down, and once it reaches the equilibrium, the corresponding dose
is the MTD. In this way, the CFO method avoids introducing any essential
design parameters to calibrate, which guarantees its robustness and ease
for implementation in practice. The efficacy monitoring is conducted in a
simple and intuitive manner by choosing the dose which is most probable
to possess the highest efficacy rate. Thus, the whole procedure of the
CFO design is model-free and calibration-free and it helps to bypass
the risk of model misspecification and alleviate the effect of parameter
calibration. The simulation studies show that the CFO design has robust
performance in contrast to other existing methods in both MTD- and
OBD-identification tasks. For phase I trials, the CFO design strikes a
good balance between efficiency and safety, and for phase I/II trials, it
yields similar or sometimes slightly better performance compared with the
competing methods as shown by our simulations with random scenarios.

Although minimization of VL(γL) and VR(γR) seems complicated, the
computation of the CFO design is fast due to the small sample size of a
phase I/II trial. Using a laptop with Intel i7-10510U CPU, it only takes
0.17 second to implement the CFO design for a phase I trial with sample
size 30 and 1.5 seconds for a phase I/II trial with sample size 60. Moreover,
as γL and γR only depend on the numbers of patients treated at relevant
dose levels as well as the target DLT rate ϕ, their values can be determined
beforehand as shown in Figure 2.

The early stopping rules used in CFO are not internal components
of the design, and other rules may be adopted for safety and futility
stopping (Wages and Tait 2015). Our stopping rules follow the work of
Lin and Yin (2017b) and Liu and Yuan (2015), which deliver robust and
good performances with the toxicity and futility cutoff values of 0.95

and 0.9. In practice, other cutoff values can be adopted according to
the characteristics of the trial. Before the trial starts, the cutoff values
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can be selected using simulation studies to achieve overall good trial
performance.

In the development of the CFO method, we only consider the case
where the efficacy and DLT outcomes are ascertainable quickly after the
treatment. However, it is straightforward to extend the CFO design for the
late-onset endpoints; for example, we can combine the CFO design with
the so-called factional imputation method (Yin et al. 2013; Yin and Yang
2020) for the late-onset endpoints, which warrants further development.

The R code for reproducing the simulation results is available at
https://github.com/JINhuaqing/CFO-simu, and the one-
trial implementation of the CFO design is accessible at https://
github.com/JINhuaqing/CFO.
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Figure 1. Illustration of the posterior distributions of the DLT probabilities for the left, current
and right doses, (pL, pC , pR), with the left panel corresponding to large OC/ŌL and the right
panel to small OC/ŌL. The dotted line indicates the target DLT rate ϕ.
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Figure 2. The threshold values of (γL, γR) when the numbers of patients treated at the left,
current, and right doses (mL,mC ,mR) vary from 1 to 30 given the target DLT rate ϕ = 0.3.
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Figure 3. Simulation results for the MTD identification based on 5000 randomly generated
dose–toxicity scenarios with the average probability difference of 0.05, 0.07, 0.10 and 0.15
(from top to bottom panels) around the target toxicity probability ϕ = 0.33.
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Figure 4. Simulation results for the OBD identification based on 5000 randomly generated
phase I/II scenarios with the average probability difference of 0.05, 0.07, 0.10 and 0.15
around the target toxicity probability ϕ = 0.30 under the umbrella-shape (top), plateau-shape
(middle) and mixed (bottom) dose–efficacy curves. The minimal acceptable efficacy rate is
ψ = 0.3 and the maximal sample size is 60 with a cohort size of 3. The dashed lines indicate
the results for the CFO design.
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Figure 5. Six simulation scenarios for assessing the CFO design in identification of the
optimal biological dose (OBD). The dashed line is the dose–efficacy curve while the solid line
is the dose–toxicity curve. The OBD is highlighted by asterisk in the x-axis.
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Figure 6. Dose allocations and the corresponding toxicity and efficacy outcomes for the
redesigned trial.
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Table 1. Dose escalation and de-escalation rules of the CFO design in searching for the
MTD.

pC against pR

pC against pL OC/ŌL > γL

Yes (De-escalation) No (Stay)

ŌC/OR > γR
Yes (Escalation) Stay Escalation

No (Stay) De-escalation Stay
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Table 2. The percentage of MTD selection (the number of patients treated at each dose)
under the CFO design in comparison with the BOIN and CRM under six fixed scenarios with
the target toxicity probability 0.33 in boldface. None represents the percentage of trials of
non-selection. Benchmark indicates the results under the non-parametric optimal design with
complete information.

Dose Level DLT None
Design 1 2 3 4 5 (%) (%)

Scenario 1
pk 0.33 0.45 0.58 0.70 0.80
CFO 63.8 (19.6) 20.8 (6.9) 1.4 (1.0) 0.1 (0.1) 0 (0) 37.0 13.9
BOIN 58.7 (18.4) 20.6 (6.5) 1.7 (1.2) 0.1 (0.1) 0 (0) 37.2 18.9
CRM 62.0 (19.3) 21.2 (6.2) 2.2 (1.7) 0 (0.2) 0 (0) 37.7 14.6
Benchmark 74.3 (30) 20.6 (30) 1.2 (30) 0 (30) 0 (30) 57.2 3.9

Scenario 2
pk 0.18 0.33 0.52 0.60 0.70
CFO 25.2 (10.9) 61.2 (14.4) 11.7 (4.1) 1.1 (0.5) 0.1 (0) 30.6 0.7
BOIN 24.5 (11.5) 60.1 (13.2) 12.7 (4.3) 1.0 (0.5) 0 (0) 30.4 1.6
CRM 18.9 (10.6) 60.5 (12.3) 18.5 (5.9) 1.1 (0.9) 0 (0.1) 32.5 0.9
Benchmark 16.9 (30) 72.2 (30) 10.6 (30) 0.3 (30) 0 (30) 46.6 0.0

Scenario 3
pk 0.12 0.20 0.33 0.40 0.50
CFO 3.4 (5.9) 29.7 (9.9) 43.1 (9.5) 18.7 (3.7) 5.1 (1.0) 25.9 0.1
BOIN 3.1 (6.1) 29.1 (10.1) 41.1 (8.7) 20.7 (3.9) 5.7 (1.1) 25.8 0.4
CRM 1.3 (5.6) 18.7 (7.1) 46.0 (9.7) 26.8 (5.4) 6.9(2.1) 28.5 0.3
Benchmark 1.0 (30) 20.1 (30) 48.0 (30) 23.5 (30) 7.4 (30) 31.0 0

Scenario 4
pk 0.01 0.02 0.03 0.33 0.50
CFO 0 (3.1) 0 (3.2) 11.2 (5.1) 70.4 (13.8) 18.5 (4.8) 24.1 0
BOIN 0 (3.1) 0 (3.2) 14.3 (7.3) 67.5 (11.7) 18.2 (4.7) 21.6 0
CRM 0 (3.1) 0 (3.0) 6.2 (4.0) 58.7 (9.6) 35.1 (10.3) 28.5 0
Benchmark 0 (30) 0.0 (30) 0.1 (30) 86.3 (30) 13.5 (30) 17.8 0

Scenario 5
pk 0.00 0.00 0.05 0.10 0.33
CFO 0 (3.0) 0 (3.0) 0.2 (3.7) 17.4 (6.1) 82.4 (14.2) 18.3 0
BOIN 0 (3.0) 0 (3.0) 0.3 (3.7) 17.3 (7.4) 82.4 (12.8) 17.1 0
CRM 0 (3.0) 0 (3.0) 0 (3.0) 6.7 (4.0) 93.3 (16.9) 20.5 0
Benchmark 0 (30) 0 (30) 0.1 (30) 4.2 (30) 95.8 (30) 9.6 0

Scenario 6
pk 0.45 0.55 0.65 0.75 0.85
CFO 46.5 (19.2) 3.3 (2.5) 0.1 (0.2) 0 (0) 0 (0) 46.2 50.1
BOIN 40.9 (17.0) 3.1 (2.5) 0.1 (0.2) 0 (0) 0 (0) 46.3 55.9
CRM 45.5 (18.8) 2.8 (2.3) 0.1 (0.5) 0 (0) 0 (0) 46.7 51.6
Benchmark 61.8 (30) 1.9 (30) 0.1 (30) 0 (30) 0 (30) 65.0 36.2

Prepared using sagej.cls



36 Journal Title XX(X)

Table 3. The percentage of OBD selection (the number of patients treated at each dose)
under the CFO design in comparison with existing phase I/II dose-finding methods under six
fixed scenarios in Figure 5. None represents the percentage of trials of non-selection.
Benchmark indicates the results under the non-parametric optimal design with complete
information.

Dose Level DLT/Efficacy None
Design 1 2 3 4 5 (%) (%)

Scenario 1
(pk, qk) (0.05, 0.20) (0.10, 0.30) (0.30,0.50) (0.50, 0.50) (0.60, 0.50)
CFO 13.6 (13.9) 23.0 (16.1) 58.4 (26.6) 3.1 (3.0) 0.1 (0.2) 19.8/37.6 1.8
MADA 2.8 (9.9) 41.7 (21.0) 54.4 (23.5) 1.0 (4.7) 0 (0.9) 20.9/38.1 0.0
STEIN 1.2 (8.4) 53.8 (18.0) 43.7 (29.5) 0.6 (3.8) 0 (0.2) 21.8/39.8 0.8
WT 6.7 (10.9) 24.2 (17.8) 66.1 (27.6) 1.7 (3.4) 0 (0.1) 20.8/38.6 1.4
Benchmark 0 (60) 0.9 (60) 98.4 (60) 0 (60) 0 (60) 31.0/40.0 0.8

Scenario 2
(pk, qk) (0.15, 0.20) (0.25,0.50) (0.30, 0.50) (0.35, 0.50) (0.40, 0.50)
CFO 9.9 (15.4) 59.4 (31.3) 17.8 (9.1) 3.8 (2.1) 0.4 (0.3) 23.6/42.0 8.6
MADA 24.2 (18.8) 51.6 (23.9) 20.0 (11.6) 3.1 (3.9) 0.5 (1.4) 23.9/40.5 0.6
STEIN 18.8 (12.5) 52.3 (31.0) 17.7 (11.0) 3.6 (2.7) 0.3 (0.6) 24.4/43.5 7.3
WT 11.3 (19.0) 62.9 (28.7) 13.9 (8.3) 1.0 (1.1) 0 (0.1) 22.7/40.0 10.8
Benchmark 0.1 (60) 97.6 (60) 0 (60) 0 (60) 0 (60) 29.0/44.0 2.3

Scenario 3
(pk, qk) (0.10, 0.30) (0.22,0.60) (0.25, 0.55) (0.30, 0.35) (0.40, 0.20)
CFO 8.6 (11.9) 68.8 (36.4) 20.0 (9.6) 0.8 (1.2) 0.1 (0.3) 20.4/52.4 1.7
MADA 12.4 (15.6) 64.8 (24.1) 21.9 (13.3) 0.7 (4.8) 0.1 (2.2) 21.0/47.6 0.1
STEIN 13.5 (11.0) 67.6 (37.7) 17.0 (9.2) 1.1 (1.4) 0 (0.3) 20.6/52.9 0.8
WT 5.8 (14.1) 74.6 (34.6) 18.9 (10.4) 0.2 (0.8) 0 (0) 19.9/51.9 0.4
Benchmark 0.1 (60) 99.8 (60) 0 (60) 0 (60) 0 (60) 25.4/40.0 0.1

Scenario 4
(pk, qk) (0.05, 0.08) (0.15, 0.17) (0.25,0.45) (0.40, 0.30) (0.45, 0.25)
CFO 5.2 (10.9) 13.8 (14.3) 66.5 (29.3) 4.6 (3.8) 0.6 (0.6) 20.1/30.2 9.3
MADA 2.6 (9.0) 29.0 (18.2) 64.8 (24.2) 3.5 (6.7) 0.1 (2.0) 21.4/28.7 0.0
STEIN 0.6 (6.8) 22.2 (12.4) 65.7 (32.0) 3.2 (6.0) 0.2 (1.2) 22.5/32.8 8.1
WT 0.7 (8.3) 10.7 (14.4) 72.0 (30.0) 2.6 (4.2) 0 (0.3) 20.8/31.3 14.0
Benchmark 0 (60) 0 (60) 97.1 (60) 0 (60) 0 (60) 26.0/25.0 2.9

Scenario 5
(pk, qk) (0.05, 0.35) (0.07, 0.45) (0.10, 0.50) (0.12, 0.55) (0.16,0.75)
CFO 7.9 (10.8) 14.6 (13.0) 14.5 (11.7) 16.6 (9.9) 46.3 (14.6) 10.3/53.1 0.1
MADA 1.2 (4.8) 3.2 (6.9) 6.9 (9.5) 12.5 (12.7) 76.3 (26.1) 12.4/60.1 0.0
STEIN 2.5 (8.0) 14.8 (14.4) 25.7 (15.7) 28.6 (12.4) 28.4 (9.5) 10.0/51.8 0.0
WT 16.4 (14.8) 31.3 (19.6) 22.6 (13.7) 13.1 (7.1) 16.7 (4.8) 8.5/47.4 0.0
Benchmark 0.1 (60) 0.4 (60) 2.2 (60) 6.3 (60) 91.0 (60) 10.0/52.0 0

Scenario 6
(pk, qk) (0.40, 0.15) (0.50, 0.25) (0.55, 0.50) (0.60, 0.50) (0.70, 0.50)
CFO 3.2 (29.7) 0.8 (3.0) 0.2 (0.4) 0 (0) 0 (0) 41.2/16.3 95.9
MADA 53.6 (33.4) 1.0 (6.7) 1.2 (1.5) 3.3 (1.0) 7.4 (0.9) 43.1/19.4 33.5
STEIN 7.0 (21.3) 2.0 (3.8) 0.4 (0.6) 0 (0) 0 (0) 41.9/17.4 90.6
WT 10.1 (29.8) 0.1 (1.7) 0 (0.1) 0 (0) 0 (0) 40.7/15.6 89.8
Benchmark 0.1 (60) 0 (60) 0 (60) 0 (60) 0 (60) 55.0/38.0 99.9
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