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Phase II clinical trials make a critical decision of go or no-go to a subse-
quent phase III studies. A considerable proportion of promising drugs identified
in phase II trials fail the confirmative efficacy test in phase III. Recognizing
the low posterior probabilities of H1 when accepting the drug under Simon’s
two-stage design, the Bayesian enhancement two-stage (BET) design is proposed
to strengthen the passing criterion. Under the BET design, the lengths of high-
est posterior density (HPD) intervals, posterior probabilities of H0 and H1 are
computed to calibrate the design parameters, aiming to improve the stability
of the trial characteristics and strengthen the evidence for proceeding the drug
development forward. However, from a practical perspective, the HPD interval
length lacks transparency and interpretability. To circumvent this problem, we
propose the BET design with error control (BETEC) by replacing the HPD inter-
val length with the posterior error rate. The BETEC design can achieve a balance
between the posterior false positive rate and false negative rate and, more impor-
tantly, it has an intuitive and clear interpretation. We compare our method with
the BET design and Simon’s design through extensive simulation studies. As an
illustration, we further apply BETEC to two recent clinical trials, and investi-
gate its performance in comparison with other competitive designs. Being both
efficient and intuitive, the BETEC design can serve as an alternative toolbox for
implementing phase II single-arm trials.
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1 INTRODUCTION

The phase II clinical trial is an essential and fundamental step for preliminary assessment of the drug’s efficacy.1 The goals
of such trials are to screen out non-promising drugs and carry promising ones into large-scale phase III clinical trials which
are typically long-term and costly. Phase II trials can be single-arm,2 or two-arm involving randomized comparison,3,4

and some designs even adopt a single-to-double arm transition scheme.5-7 Although randomized two-arm phase II trials
seem to be more preferable in terms of sample efficiency,8 due to the limited sample size, many phase II trials are still
designed as single-arm studies with the adaptive feature for futility stopping.9 Thus, we focus on single-arm trials with a
binary endpoint under the hypotheses framework,

H0 ∶ p ≤ p0 vs H1 ∶ p ≥ p1, (1)
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where p is the response rate of the investigational drug, p0 is the clinically uninteresting response rate, and p1 represents
the target desirable response rate.

In the frequentist paradigm, Gehan10 proposed a two-stage procedure for cancer phase II trials, where the new treat-
ment would be abandoned if no response is observed at stage 1; otherwise, the trial moves to stage 2 for enrolling
more patients. Fleming11 presented a multistage design which allows early stopping for both futility and efficacy.
The most commonly used two-stage design was proposed by Simon,2 which controls the test size at p0 and evaluates
power at p1 under a hypothesis testing framework. Ensign et al12 proposed a three-stage design, which reduces the
sample size and increases the probability of early termination when the response rate p is small. However, Ensign’s
design restricts the rejection region in the first stage to be zero response, and the sample size at least 5. To relax these
restrictions, Chen13 presented another three-stage design by extending Simon’s two-stage design. Shuster14 developed
a two-stage design which is minimax in the sense that it has the smallest globally maximized expected sample size.
Lin and Shih15 considered the uncertainty in targeting the alternative hypothesis to study the power at the planning
stage and presented an adaptive two-stage design with a new optimal criterion to reduce the expected total sample
size. Chen and Shan16 introduced the optimal and minimax three-stage design with an additional efficacy stopping
rule. Mander and Thompson17 modified Simon’s design by minimizing the expected sample size under the alterna-
tive hypothesis and allowing the efficacy stopping. Englert and Kieser18 adopted the branch-and-bound algorithm and
developed an adaptive design that allows the sample size of the second stage to depend on the number of responses
observed in the first stage. Observing that the sample size of the second stage is a monotonic function of the number
of the responses in the first stage, Shan et al19 proposed an optimal adaptive design which can maintain the type I and
II error rates.

Along the similar lines, various single-arm phase II trial designs have been proposed under the Bayesian
paradigm.20 Thall and Simon21 presented a Bayesian single-arm design based on the posterior probability which
monitors the binary outcomes continuously. Tan and Machin22 proposed the Bayesian single threshold design
(STD) and double threshold design (DTD), which do not need a distribution for the response rate of the inves-
tigational drug or the explicit specification of the utility or loss function. Wang et al23 developed a Bayesian ver-
sion of Simon’s design under which both the frequentist and Bayesian error rates can be controlled. Based on
the Bayesian predictive probability and the minimax criterion, Lee and Liu24 proposed a Bayesian phase II design
which allows continuous monitoring of the trial outcomes using predictive distributions. To inherit merits from
both the frequentist and Bayesian methods, Dong et al25 presented a Bayesian-frequentist two-stage design which
allows early acceptance and rejection of the null hypothesis as well as controlling both the frequentist and Bayesian
error rates.

A salient issue with promising drugs identified in single-arm phase II trials is the potential high failure rate of the
subsequent large-scale phase III studies.26 If the single-arm phase II trial directly leads to a subsequent phase III study,
an incorrect decision on rejection of H0 may result in the failure of the large-scale phase III trial. Gan et al27 investi-
gated 235 phase III randomized cancer trials published in 10 medical journals and found that only 38% of them achieved
significant results. In another investigation, Mandel et al28 claimed that 91% phase III studies in glioblastoma failed
to show an improvement in overall survival although the prior phase II studies had declared success. Such high fail-
ure rates of phase III trials cause enormous waste of the time and resources, while the reasons behind are complex.29

It may be mainly due to the small sample size in phase II trials and a lack of correlation between the tumor response
and the survival endpoints used in phase III trials.30 Another possible reason, as pointed out by Shi and Yin,31 is the
extensive use of Simon’s design29,32,33 and its low posterior probability of H1 when accepting the drug under some
circumstances.

Constructed under a Bayesian framework, the Bayesian enhancement two-stage (BET) design31 renders a good control
over the posterior probability of H0 when carrying the trial to the second stage and that of H1 when declaring the drug as
promising. However, to control the variance, the BET design utilizes criteria based on the highest posterior density (HPD)
interval, that is, the narrowest one among all Bayesian credible intervals. From an intuitive and practical perspective,
such criteria lack transparency and interpretability, and thus they do not have a clear range of values to choose from. To
circumvent this issue, we adopt the posterior false positive and false negative error rates in Lee and Zelen,34 which are
the counterparts of the type I and type II error rates in the Bayesian framework. The posterior error rates are defined as
the posterior probabilities of the true situation being the opposite of the outcome of the trial. Based on these concepts, we
replace the constraints on the HPD interval lengths with the posterior error probabilities when rejecting the drug at stage
1 and stage 2. Unlike the BET design which mainly focuses on reducing the posterior error rates under the minimally
required response number and using the lengths of HPD intervals to control the variance, we propose the BET design with
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error control (namely, BETEC) by explicitly controlling both posterior error rates when rejecting and accepting the drug
respectively. While inheriting the merits of the BET design, the BETEC design is much easier to interpret and implement
in practice.

The rest of this article is organized as follows. In Section 2, we present the BETEC design and its variant, the 𝛿-BETEC
design, and discuss their relationships with the BET design. We present the simulation studies of the BETEC and 𝛿-BETEC
designs in Section 3. Section 4 applies the BETEC and 𝛿-BETEC designs to two trial examples to further assess their
performances. We provide a brief discussion in Section 5.

2 METHODOLOGY

2.1 One-stage single-arm trial

To facilitate understanding the differences between the frequentist and Bayesian designs, we begin our discussion with
the one-stage single-arm phase II trial. Focusing on the hypotheses in Equation (1), when the number of responses
y out of n subjects is larger than or equal to r, we declare the drug as promising; otherwise the drug is nonpromis-
ing. For the one-stage trial, we aim to find the threshold r and the sample size n to control the error rates of
the trial.

Under the frequentist framework, we assume the response rate p is a constant. To find the design parameters (r,n),
we control the type I and II error rates,

sup
p∈H0

Pr (y ≥ r|p,n) = Pr (y ≥ r|p0,n) ≤ 𝛼, sup
p∈H1

Pr (y < r|p,n) = Pr (y < r|p1,n) ≤ 𝛽,

where 𝛼 and 𝛽 are the nominal frequentist type I and II error rates, respectively.
From a Bayesian perspective, the response rate p is assumed to be random, and we typically impose a Beta prior on p.

Based on the posterior distribution of p, we can obtain the values of (r, n) by controlling the posterior error rates,

sup
y≥r

Pr (H0|y,n) = Pr (H0|r,n) ≤ 𝛼∗, sup
y<r

Pr (H1|y,n) = Pr (H1|r − 1,n) ≤ 𝛽∗,

where 𝛼∗ and 𝛽∗ are the Bayesian maximum tolerable false positive and false negative error rates, respectively.

2.2 The BET design

As a Bayesian design, the BET design31 imposes a Beta-Binomial model on the response rate p. It is characterized by
four parameters (r1, n1, r, n) via the posterior probabilities of H0 and H1 and the HPD intervals. Let y1 and y2 denote the
numbers of responses observed in the first and second stages, respectively. In the first stage, the sample size is n1 and
if y1 ≥ r1, the trial would proceed to the second stage, otherwise the trial is terminated early for futility. In the second
stage, n2 =n−n1 new subjects are enrolled. If at the end of the trial the total number of responses y= y1 + y2 reaches r,
the drug is considered as promising; otherwise, the drug is announced as non-promising. The basic idea behind the BET
design is that when the drug is declared as promising, the posterior probability of p> p0 at stage 1 and that of H1 at stage
2 should be adequately large. Therefore, it controls Pr (p > p0|y1,n1) > 𝜋1 and Pr (p > p1|y1 + y2,n) > 𝜋2, where 𝜋1 and 𝜋2
are prespecified probability cutoffs. To determine the design parameters (r1, n1, r, n), Shi and Yin31 proposed the following
constraints,

Stage 1 ∶ lp(𝜋1|r1,n1) < 𝓁1, Pr (p > p0|r1,n1) > 𝜋1,

Stage 2 ∶ lp(𝜋2|r,n) < 𝓁2, Pr (p > p1|r,n) > 𝜋2,

where lp(𝜋|r,n) is the length of the HPD interval for p when observing r responses among n subjects with coverage
probability 𝜋, and 𝓁1 and 𝓁2 are prespecified design parameters.

Compared with the one-stage Bayesian design, the BET design has two stages, thus it enjoys the adaptive feature
of futility stopping which helps to reduce the ethical risk. To mitigate the high failure rate of phase III trials, the
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BET design sets a more stringent criterion when declaring the drug as promising, that is, it requires a high posterior
probability (at least 𝜋2) of p> p1 to guarantee the efficacy of the drug to be high enough, while the one-stage Bayesian
design only requires a high posterior probability (at least 1 − 𝛼∗) of p> p0. Although it can reduce the false positive rate
significantly, such a strict criterion also makes the BET design fail to adopt the posterior false negative error constraint,
that is, Pr (H1|r − 1,n) ≤ 𝛽∗, as there is typically no feasible solution. As a result, to limit the variance of the trial, the BET
design utilizes criteria based on HPD intervals to find a suitable sample size which however sacrifices the transparency and
interpretability.

2.3 The BETEC design

To impose a more stringent efficacy evaluation in single-arm phase II trials while preserving the interpretability, we pro-
pose the BETEC design. We adopt a Beta-Binomial model and assume the response rate p follows a Beta prior distribution,
that is, p∼Beta(a,b), where a= b= 1 corresponds to a uniform prior distribution.

In the first stage, via the conjugacy property of the Beta-Binomial model, we can derive the posterior distribution of
p, p|(y1, n1)∼Beta(a+ y1, b+n1 − y1). If the number of responses y1 is greater than or equal to the cutoff r1, we carry on
the trial to the second stage; otherwise, we terminate the trial early for futility. In stage 1, we aim to screen out the drugs
whose response rates are below p0. When the trial proceeds to the second stage, we expect a high posterior probability of
p> p0, that is,

min
y1≥r1

Pr (p > p0|y1,n1) = Pr (p > p0|r1,n1) > 𝜋1, (2)

where 𝜋1 is a prespecified cutoff probability and the equality is due to the monotonicity of Pr (p > p0|r1,n1) with respect to
y1 as shown in the Appendix. The posterior probability Pr (p > p0|r1,n1) under the Beta-Binomial model can be written as

Pr (p > p0|r1,n1) = ∫
1

p0

pa+r1−1(1 − p)b+n1−r1−1

B(a + r1, b + n1 − r1)
dp,

where B(a,b) is the Beta function with parameters a and b.
Intuitively, constraint (2) can be satisfied even for a very small sample size n1, if r1 is chosen to be close to n1 enough,

that is, (2) alone cannot control the sample size. However, if r1 is too large, it is likely to falsely reject a drug in the
first stage. This is not desirable as such an imprudent decision may neglect some promising drugs. In the first stage, the
information collected is very limited, so that we need to be conservative. Therefore, we add another constraint to control
the posterior error rate when rejecting the drug for futility. Only when the evidence of futility is strong enough, we would
terminate the trial early. We control the posterior probability of p> p1 when an early termination is confirmed by

Pr (p > p1|y1 < r1,n1) < a1,

where a1 is a prespecified design parameter. The computation of Pr (p > p1|y1 < r1,n1) can resort to Bayes’ theorem and
the Monte Carlo method. First, we obtain the posterior distribution of p given y1 < r1, and using Bayes’ theorem, we have

f (p|y1 < r1,n1) =
Pr (y1 < r1|p,n1)𝜋(p)

Pr (y1 < r1|n1)
,

where 𝜋(p) is the prior density of p. The probability Pr (y1 < r1|n1) = ∫ 1
0 Pr (y1 < r1|p,n1)𝜋(p)dp can be calculated using

the Monte Carlo method, that is, we first draw a large number of samples {p(j)}N
j=1 from the prior distribution of p, and

then compute 1
N

∑N
j=1 Pr (y1 < r1|p(j),n1) as an approximation of Pr (y1 < r1|n1). Similarly, we can obtain

Pr (p > p1|y1 < r1,n1) = ∫
1

p1

f (p|y1 < r1,n1)dp.

If the trial does not show strong evidence of futility, we enroll more patients in the second stage. Our goal is to carry
the promising drug forward and reduce the failure rate of a successive phase III trial, and thus we pay more attention to
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determining whether p> p1 or not. Similar to the discussion of stage 1, we hope the drug has an adequately high posterior
probability of p> p1 in order to claim it to be promising. Therefore, we adopt the following constraint,

min
y≥r

Pr (p > p1|y,n) = Pr (p > p1|r,n) = ∫
1

p1

pa+r−1(1 − p)b+n−r−1

B(a + r, b + n − r)
dp > 𝜋2, (3)

where 𝜋2 is a prespecified cutoff probability.
Similar to stage 1, restricting Pr (p > p1|r,n) alone cannot calibrate reasonable values for parameters (r,n). With r

adequately close to n, constraint (3) can always be satisfied for almost any n. Hence, we still consider to restrict the
posterior error rate when rejecting the drug in the entire trial (including both stage 1 and stage 2). Denote R as the event
of rejecting the drug after the entire trial, we directly restrict the posterior probability of p> p1 under R,

Pr (p > p1|R) < a2,

where a2 is a prespecified design parameter. The computation of Pr (p > p1|R) is similar to that of Pr (p > p1|y1 < r1,n1).
Based on the above constraints, we can search for the minimal sample size (n1 or n) as well as the corresponding minimum
required number of responses (r1 or r) which satisfy the constraints. The algorithm for optimal parameters (r1, n1) is
shown in Algorithm 1, where nmin is the minimal sample size our search starts with at stage 1 and we typically set
nmin = 1. The maximal sample size we search up to at stage 1 is denoted as nmax , which is typically set as nmax = 50. The
algorithm searching for (r,n) can be developed similarly.

As suggested by Shi and Yin,31 we typically set 𝜋2 > 𝜋1. At stage 2, our priority is to identify the truly promising
drugs so as to decrease the failure rate in subsequent phase III trials, while the posterior error probability when falsely
claiming the drug nonpromising is less concerned. Consequently, we may choose a relatively large a2 to decrease the
sample size n. Stage 1 should be conservative due to the limited information, so generally we set a1 < a2 and keep 𝜋1 not
very large.

Algorithm 1. Parameter Search for (r1, n1) in the BETEC Design

Input:
1: Design parameters 𝜋1, a1, nmin and nmax. Typically, nmin = 1 and nmax = 50.
2: for m = nmin,… ,nmax do
3: for y1 = 1,… ,m do
4: Compute Pr(p < p0|y1,m) and

∑y1−1
h=0 Pr(p < p1|h,m)

5: if Pr(p < p0|y1,m) < 𝜋1 and
∑y1−1

h=0 Pr(p < p1|h,m) > a1 then
6: Let r1 = y1, n1 = m.
7: return (r1,n1)
8: end if
9: end for

10: end for
Output:
11: Design parameters (r1,n1).

2.4 The 𝜹-BETEC design

In Algorithm 1, to search for the optimal parameters (r1, n1, r, n), the Monte Carlo sampling procedure needs to be imple-
mented repeatedly, which is time-consuming. Thus, we provide an alternative to the BETEC design which is called the
𝛿-BETEC design by specifying a 𝛿 margin in stage 2. In the 𝛿-BETEC design, we adopt the following constraints to
determine parameters (r1, n1, r, n),

Stage 1 ∶ Pr (p > p1|r1 − 1,n1) < b1, Pr (p > p0|r1,n1) > 𝜋1,

Stage 2 ∶ Pr (p > p1 + 𝛿|r − 1,n) < b2, Pr (p > p1|r,n) > 𝜋2,
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where (𝜋1, 𝜋2, b1, b2) are the prespecified design parameters and 𝛿 is a prespecified margin to mimic the two equations in
stage 1. In the 𝛿-BETEC design, we choose the default value 𝛿 = 0.1, and if p1 + 0.1> 1, we adopt 𝛿 = 0.5(1 − p1). In our
simulation and real data applications, 𝛿 is always selected as 0.1.

Algorithm 2. Parameter Search for (r1, n1) in the 𝛿-BETEC Design

Input:
1: Design Parameters 𝜋1, b1, nmin and nmax. Typically, nmin = 1 and nmax = 50.
2: for m = nmin,… ,nmax do
3: for y1 = 1,… ,m do
4: Compute Pr(p < p0|y1,m) and Pr(p < p1|y1 − 1,m)
5: if Pr(p < p0|y1,m) < 𝜋1 and Pr(p < p1|y1 − 1,m) > b1 then
6: Let r1 = y1, n1 = m.
7: return (r1,n1)
8: end if
9: end for

10: end for
Output:
11: Design parameters (r1,n1).

The 𝛿-BETEC design applies the same strategy to control the posterior error rate under the trial outcome of claiming
the drug promising. However, for limiting the posterior error rate on the other side, the 𝛿-BETEC design follows a more
aggressive strategy by requiring the posterior distribution of p to be largely confined between p0 and p1 at stage 1 and
between p1 and p1 + 𝛿 at stage 2 when the response number reaches the maximal rejecting value (ie, r1 − 1 at stage 1 and
r − 1 at stage 2). With the conjugate property of the Beta-Binomial model, this strategy greatly simplifies the computation.
However, at stage 2, since for moderate sample size n, Pr (p > p1|r,n) ≈ Pr (p > p1|r − 1,n), it is impossible to restrict
Pr (p > p1|r − 1,n) below a small threshold value b2 because we require Pr (p > p1|r,n) to be large. Hence, we introduce
𝛿 to confine the right tail of the posterior distribution of the response rate p in the second stage. The algorithm to search
for the optimal parameters (r1,n1) in the 𝛿-BETEC design is given in Algorithm 2. We can search for parameters (r,n) in
a similar way.

3 SIMULATION STUDIES

We conduct extensive simulation studies on the BETEC and 𝛿-BETEC designs to assess their performances under dif-
ferent values of (p0, p1). The corresponding R codes are available at https://github.com/JINhuaqing/BETEC. We vary
p0 from 0.05 to 0.3 and fix 𝛿 as 0.1 and take a non-informative prior p∼Beta(1,1). As discussed in Section 2, we let
𝜋2 > 𝜋1 so we set (𝜋1, 𝜋2) = (0.5, 0.55). Table 1 presents the optimal solutions of (r1, n1, r, n) under different design param-
eters. Intuitively, a larger posterior false negative error rate would require a smaller sample size. However, it is worth
noting that for the BETEC design, with the same a2, sometimes a larger value of a1 yields a larger maximal sample
size n. For example when (p0, p1)= (0.1, 0.3), the maximal sample size n in the BETEC design with (a1, a2)= (0.02, 0.08)
is 69, while that with (a1, a2)= (0.01, 0.08) is 56. It is because the value of r1 affects the posterior distribution of p
given R, which is used to determine the parameters (r, n). The posterior probabilities of H1 when the drug is rejected
in the entire trial and those when the trial reaches the minimally required level (ie, Pr (H1|R) and Pr (H1|r,n)) are
also presented in Table 1. Furthermore, we show the probabilities of early termination in the first stage (denoted
as PET0 and PET1) and the expected sample sizes (denoted as ESS0 and ESS1) when response rate is p0 and p1,
respectively.

It is clear to observe that stage 1 of the BETEC design tends to be conservative as PET0 is not high enough under H0.
Due to the limited information at stage 1, early stopping for futility is typically not desirable and drugs tend to be allowed
to proceed to stage 2. Under H1, values of PET1 are small under different trial parameters, which is consistent with our
principle in the design. Furthermore, because the small PETs can help to reduce the risk of rejecting a promising drug
which is the main concern of the first stage, the relatively small n1 is acceptable at stage 1. At stage 2, the BETEC design
ensures a low posterior probability of H1 when rejecting drug (denoted as R) and a high posterior probability of H1 when

https://github.com/JINhuaqing/BETEC
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T A B L E 1 Characteristics of the BETEC and 𝛿-BETEC designs for binary endpoint with (𝜋1, 𝜋2) = (0.5, 0.55) under a Beta(1,1) prior
distribution and various specifications of (p0, p1), (a1, a2) for BETEC and (b1, b2) for 𝛿-BETEC in terms of the posterior probability of H1,
probability of early termination (PET), expected sample size (ESS), and frequentist type I and II error rates (𝛼, 𝛽, 𝛽Δ), where 𝛽Δ represents the
type II error rate calculated at p1 + 0.05

Design p0 p1 a1 or b1 a2 or b2 r1/n1 r/n Pr (H1|R) Pr (H1|r,n) PET0 PET1 ESS0 ESS1 𝜶 𝜷 𝜷𝚫

BETEC 0.05 0.25 0.010 0.080 1/16 19/75 0.080 0.561 0.440 0.010 49.0 74.4 0.000 0.484 0.158

0.020 0.080 1/13 19/75 0.080 0.561 0.513 0.024 43.2 73.5 0.000 0.487 0.162

0.020 0.100 1/13 13/51 0.096 0.574 0.513 0.024 31.5 50.1 0.000 0.482 0.201

𝛿-BETEC 0.010 0.050 1/16 13/51 0.097 0.574 0.440 0.010 35.6 50.6 0.000 0.479 0.198

0.025 0.050 1/12 13/51 0.099 0.574 0.540 0.032 29.9 49.8 0.000 0.484 0.203

0.025 0.080 1/12 7/28 0.115 0.557 0.540 0.032 19.4 27.5 0.000 0.430 0.223

BETEC 0.10 0.30 0.010 0.080 1/12 17/56 0.078 0.554 0.282 0.014 43.6 55.4 0.000 0.475 0.196

0.020 0.080 1/10 21/69 0.076 0.559 0.349 0.028 48.4 67.3 0.000 0.492 0.186

0.020 0.100 1/10 10/33 0.098 0.554 0.349 0.028 25.0 32.4 0.001 0.453 0.233

𝛿-BETEC 0.010 0.050 1/12 17/56 0.077 0.553 0.282 0.014 43.6 55.4 0.000 0.475 0.196

0.025 0.050 1/10 17/56 0.081 0.554 0.349 0.028 40.0 54.7 0.000 0.478 0.200

0.025 0.080 1/10 10/33 0.095 0.554 0.349 0.028 25.0 32.4 0.001 0.453 0.233

BETEC 0.20 0.40 0.010 0.080 2/12 16/39 0.078 0.568 0.275 0.020 31.6 38.5 0.002 0.493 0.257

0.020 0.080 1/7 16/39 0.079 0.568 0.210 0.028 32.3 38.1 0.002 0.496 0.261

0.020 0.100 1/7 9/22 0.093 0.556 0.210 0.028 18.9 21.6 0.020 0.457 0.279

𝛿-BETEC 0.010 0.050 3/17 24/59 0.062 0.556 0.310 0.012 46.0 58.5 0.000 0.494 0.214

0.025 0.050 1/7 24/59 0.065 0.556 0.210 0.028 48.1 57.5 0.000 0.499 0.220

0.025 0.080 1/7 16/39 0.078 0.568 0.210 0.028 32.3 38.1 0.002 0.496 0.261

BETEC 0.30 0.50 0.010 0.080 4/13 13/25 0.077 0.577 0.421 0.046 20.0 24.4 0.017 0.501 0.307

0.020 0.080 2/7 13/25 0.080 0.577 0.329 0.063 19.1 23.9 0.017 0.507 0.314

0.020 0.100 2/7 8/15 0.099 0.598 0.329 0.063 12.4 14.5 0.050 0.502 0.349

𝛿-BETEC 0.010 0.050 7/24 28/55 0.052 0.553 0.388 0.011 43.0 54.6 0.001 0.500 0.228

0.025 0.050 4/14 28/55 0.054 0.553 0.355 0.029 40.4 53.8 0.001 0.502 0.230

0.025 0.080 4/14 19/37 0.064 0.564 0.355 0.029 28.8 36.3 0.005 0.501 0.271

declaring the drug as promising at the boundary values, which shows that BETEC design inherits the merits of the BET
design.

To better demonstrate the characteristics of the BETEC design, we further calculate the frequentist type I and type
II error rates 𝛼 and 𝛽. As the focus of our design is on controlling the false positive rate, the type II errors are inevitably
inflated. Note that the type II error rate is calculated at p= p1, the boundary value of H1. If we recalculate the type II
error rate at p1 + 0.05 (denoted as 𝛽Δ) which is marginally larger than p1, then the frequentist false negative errors are
dramatically reduced to a decent level (around 0.25). Meanwhile, as the type II errors are inflated, the BETEC design
yields extremely small type I errors which are typically around the scale of 10−3 or even lower. Such results are consistent
with our design principle that is to control the false positive rates. From a Bayesian perspective, the posterior probability
of H1 when rejecting the drug, Pr (H1|R), is well controlled which indicates that if the drug is rejected, the probability of
overlooking a promising drug is small under the BETEC design. Such a conflict between 𝛽 and Pr (H1|R) is due to the
differences between frequentist and Bayesian perspectives.

In the left panels of Figure 1, we exhibit the density plots of the posterior distributions when the total response number
reaches the minimum required level (panel A) and when rejecting the drug in the entire trial (panel C) over a range of
specified (p0,p1) for the BETEC design. Clearly, the majority of the posterior distribution of p under the minimally required
level lies beyond the desirable target response rate p1, which shows that the BETEC design guarantees the effectiveness
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F I G U R E 1 Comparisons of posterior distributions of p when the total response number reaches the minimum required level (top
panels) and when rejecting the drug in the entire trial (bottom panels) over a range of specified (p0, p1) under the BETEC design (left panels)
and 𝛿-BETEC design (right panels). The red solid line is for (p0, p1)= (0.05, 0.25), the blue dashed line for (p0, p1)= (0.1, 0.3), the green dotted
line for (p0, p1)= (0.2, 0.4), and the purple dash-dotted line for (p0, p1)= (0.3, 0.5) [Colour figure can be viewed at wileyonlinelibrary.com]

of the drug when declaring it promising. Meanwhile, most of the posterior distribution of p when rejecting the drug
concentrates below p1, which demonstrates a good control of the posterior error rate when rejecting the drug under the
BETEC design. These results indicate that the BETEC design strikes a good balance between the posterior false positive
and false negative error rates.

In a summary, the BETEC design provides better interpretability with more transparent design parameters. In the BET
design,31 the HPD intervals are used for restricting the variance of the posterior distribution of p. However, the lengths
of HPD intervals are difficult to interpret and thus may cause ambiguity in specifying their values in practice. That is,
(𝓁1,𝓁2) do not have a clear range to choose from, so selection of proper values for (𝓁1,𝓁2) is not an easy task. Yet, in the
BETEC design, the meaning of (a1, a2) is straightforward and intuitive. They represent the maximal posterior error rates
that can be tolerated when rejecting the drug at stage 1 and at stage 2, respectively. The design parameters (a1, a2) can be
chosen in a natural way: if the high risk of rejecting a promising drug is unacceptable, small values of (a1, a2) should be
chosen, while if enrolling an adequate number of subjects is a difficult task, values of (a1, a2) can be increased to reduce
the sample size.

http://wileyonlinelibrary.com
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Similar discussions can be applied to the 𝛿-BETEC design based on Table 1 and the right panels of Figure 1. It is worth
noting that compared with the BETEC design, the maximal sample size of the 𝛿-BETEC design is more stable under the
same (b1, b2) when varying the values of (p0, p1). The 𝛿-BETEC design is easy to implement and has the main merits of the
BET design (ie, ensuring the efficacy of the drug when claim it to be promising), while the introduction of 𝛿 in the second
stage helps to confine most of the posterior distribution of p between p1 and p1 + 𝛿. The design parameters (b1, b2) are
meaningful, which are used to restrict the posterior error rates when rejecting the drug at the maximal rejecting numbers
of responses at stage 1 and stage 2, respectively.

Finally, we compare our methods with three Bayesian phase II single-arm designs, including the BET design,31

the dual threshold design22 (DTD) and the predictive probability design24 (PPD). We also include Simon’s optimal
two-stage design2 and the modified Simon (m-Simon) design in the comparisons. The DTD is a two-stage design with
decision boundaries based on posterior probabilities. At the end of the first stage, the DTD would stop for futility if
Pr (p < p0|y1,n1) > 𝛾1, otherwise the trial continues to the second stage. At stage 2, the drug is declared as promising if
Pr (p > p1|y,n) > 𝛾2. The PPD, based on the predictive probabilities under the Beta-Binomial model, can monitor the trial
continuously, which focuses on the posterior probabilities of p> p0. By contrast, the three BET-based designs and DTD pay
more attention to posterior probabilities of p≥ p1. The m-Simon design refers to Simon’s optimal design when controlling
the size at p0m = (p0 + p1)/2 and limiting power at p1m = p0m + (p1 − p0). Such modifications are based upon the observa-
tion that the original Simon’s design always yields the minimal response rate r/n between p0 and p1 to declare the drug
as promising, while our designs generally yield r/n close to p1. For a direct comparison, we set (𝜋1, 𝜋2) = (0.5, 0.55) for all
BET, BETEC, and 𝛿-BETEC designs. To ensure the maximal sample sizes under different designs comparable, we calibrate
the maximal sample sizes by tuning the trial parameters for different methods under the corresponding recommended
scales. For the PPD, we fix the maximal sample size at n= 45 and monitor the trial at n1 = 15.

Table 2 shows the results of the comparisons among the seven phase II trial designs, where the frequentist error
rates (𝛼, 𝛽, 𝛽Δ) under the m-Simon design are calculated based on (p0, p1, p1 + 0.05) rather than (p0m, p1m, p1m + 0.05). The
Bayesian posterior probabilities for all methods are calculated based on a Beta(1, 1) prior. Among the seven designs, the
DTD yields the largest Pr (H1|r,n) as well as the largest frequentist type II error rate. All the BET-related methods and
DTD aim to guarantee high posterior probabilities of H1 when declaring the drug as promising, and thus they unani-
mously show reasonable posterior probabilities from the Bayesian perspective while being over-restrictive in terms of the
frequentist error rates. The m-Simon design, which is a frequentist method, shows similar features to the four Bayesian
designs, as it controls the size at p0m the middle point between p0 and p1. The PPD focuses on the posterior probability
of p> p0, and it possesses similar properties to the original Simon design, that is, low posterior probabilities of H1 when
declaring the drug as promising and low frequentist type II error rates. The minimally required response rates r/n under
the BET-related designs are slightly above p1, while those of PPD and Simon’s design fall in the middle of p0 and p1 which
are not high enough to declare p> p1 intuitively. The above phenomenon indicates that due to the existence of the gap
between p0 and p1, to reduce the false positive rate, more attention should be paid on p1 rather than p0 in the trial design.
At the same time, the Bayesian operating characteristics are substantially different from the frequentist counterparts. Due
to the limited maximal sample sizes, it is very difficult to control both the Bayesian and frequentist error rates under some
decent level simultaneously. Among the seven designs, the PPD has significantly smaller PET0 compared with the rest
methods, while the m-Simon design yields notably larger PET0 and PET1 which helps to reduce the corresponding ESS0
and ESS1.

4 TRIAL APPLICATIONS

4.1 Gemcitabine-eribulin combination trial

As an illustration, we apply the BETEC and 𝛿-BETEC designs to the gemcitabine-eribulin trial.35 This single-arm phase
II trial aimed to assess the efficacy of a gemcitabine-eribulin combination for csiplatin-ineligible patients with metastatic
urothelial carcinoma. The primary endpoint was treatment efficacy evaluated by the overall objective response, which
included overall confirmed complete response (CR) and partial response (PR). In Sadeghi et al,35 Simon’s optimal
two-stage design was used with (𝛼, 𝛽) = (0.09, 0.09) for the hypothesis test H0 : p≤ 0.2 vs H1 : p≥ 0.5. Under such trial
specifications, the design parameters were (r1, n1, r, n)= (2, 7, 7, 21). In the first stage, the trial observed 4 responses
among 7 patients. Based on Simon’s design, the trial proceeded to the second stage. In the end, the trial enrolled three
additional subjects beyond the originally planned 21 patients, and observed 12 responses out of a total of 24 patients.
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T A B L E 2 Comparisons of the BETEC, 𝛿-BETEC, BET, DTD, PPD, Simon’s optimal two-stage design, and the modified Simon
(m-Simon) design in terms of the posterior probability of H1, probability of early termination (PET), expected sample size (ESS),
frequentist type I and II error rates (𝛼, 𝛽, 𝛽Δ), and the minimally required response rate p̂, where 𝛽Δ represents the type II error rate
calculated at p1 + 0.05

Design p0 p1 r1/n1 r/n Pr (H1|R) Pr (H1|r,n) PET0 PET1 ESS0 ESS1 𝜶 𝜷 𝜷𝚫 p̂

BETEC 0.05 0.25 1/9 12/47 0.108 0.577 0.630 0.075 23.1 44.1 0.000 0.494 0.225 0.255

𝛿-BETEC 1/10 12/47 0.105 0.577 0.599 0.056 24.8 44.9 0.000 0.489 0.218 0.255

BET 1/20 11/43 0.103 0.580 0.358 0.003 34.8 42.9 0.000 0.477 0.215 0.256

DTD 1/36 14/45 0.204 0.847 0.158 0.000 43.6 45.0 0.000 0.784 0.509 0.311

PPD 0/15 4/45 0.000 0.005 0.000 0.000 45.0 45.0 0.186 0.002 0.000 0.089

Simon 2/19 6/47 0.012 0.027 0.755 0.031 25.9 46.1 0.024 0.039 0.011 0.128

m-Simona 4/20 11/46 0.098 0.478 0.984 0.225 20.4 40.1 0.000 0.433 0.193 0.239

BETEC 0.10 0.30 1/7 14/46 0.098 0.559 0.478 0.082 27.3 43.8 0.000 0.492 0.238 0.304

𝛿-BETEC 1/8 14/46 0.092 0.559 0.430 0.058 29.6 43.8 0.000 0.483 0.227 0.304

BET 2/20 14/44 0.108 0.635 0.392 0.008 34.6 43.8 0.000 0.548 0.278 0.318

DTD 2/36 17/46 0.187 0.860 0.113 0.000 44.9 46.0 0.000 0.809 0.555 0.370

PPD 1/15 7/45 0.002 0.017 0.206 0.005 38.8 44.9 0.153 0.012 0.002 0.156

Simon 3/21 8/43 0.009 0.056 0.648 0.027 28.7 42.4 0.054 0.049 0.013 0.186

m-Simon 5/20 13/45 0.088 0.470 0.957 0.238 21.1 39.1 0.000 0.439 0.209 0.289

BETEC 0.20 0.40 2/12 18/44 0.073 0.564 0.275 0.020 35.2 43.4 0.001 0.494 0.246 0.409

𝛿-BETEC 2/12 18/44 0.073 0.564 0.275 0.020 35.2 43.4 0.001 0.494 0.246 0.409

BET 5/24 18/44 0.072 0.564 0.460 0.013 34.8 43.7 0.001 0.492 0.244 0.409

DTD 6/35 22/47 0.146 0.835 0.272 0.001 43.7 47.0 0.001 0.790 0.543 0.468

PPD 2/15 13/45 0.005 0.068 0.167 0.005 40.0 44.8 0.098 0.048 0.010 0.289

Simon 5/20 13/45 0.011 0.068 0.630 0.051 29.0 43.7 0.085 0.079 0.025 0.289

m-Simon 7/21 18/45 0.072 0.516 0.891 0.200 23.6 40.2 0.001 0.474 0.236 0.400

BETEC 0.30 0.50 4/13 23/45 0.060 0.559 0.421 0.046 31.5 43.5 0.002 0.504 0.254 0.511

𝛿-BETEC 4/14 23/45 0.059 0.559 0.355 0.029 34.0 44.1 0.002 0.502 0.251 0.511

BET 7/22 24/46 0.067 0.615 0.494 0.026 34.1 45.4 0.001 0.559 0.296 0.522

DTD 8/31 25/45 0.102 0.769 0.245 0.002 41.6 45.0 0.000 0.724 0.468 0.556

PPD 4/15 18/45 0.007 0.092 0.297 0.018 36.1 44.5 0.095 0.077 0.020 0.400

Simon 7/21 18/45 0.008 0.092 0.551 0.039 31.8 44.1 0.090 0.088 0.024 0.400

m-Simon 8/18 23/46 0.062 0.500 0.859 0.240 21.9 39.3 0.003 0.492 0.255 0.500

BETEC 0.40 0.60 4/10 27/44 0.051 0.556 0.382 0.055 31.0 42.1 0.003 0.515 0.258 0.614

𝛿-BETEC 6/15 27/44 0.058 0.556 0.403 0.034 32.3 43.0 0.003 0.510 0.252 0.614

BET 10/25 27/43 0.060 0.629 0.425 0.013 35.4 42.8 0.002 0.582 0.317 0.628

DTD 10/26 30/45 0.095 0.808 0.364 0.008 38.1 44.9 0.000 0.775 0.525 0.667

PPD 5/15 23/45 0.006 0.109 0.217 0.009 38.5 44.7 0.085 0.090 0.021 0.511

Simon 8/18 23/46 0.008 0.082 0.563 0.058 30.2 44.4 0.095 0.100 0.030 0.500

m-Simon 10/18 27/45 0.050 0.484 0.865 0.263 21.6 37.9 0.004 0.494 0.253 0.600

BETEC 0.50 0.70 7/13 33/46 0.040 0.567 0.500 0.062 29.5 43.9 0.002 0.535 0.249 0.717

𝛿-BETEC 7/14 33/46 0.039 0.567 0.395 0.031 33.4 45.0 0.002 0.531 0.245 0.717

(Continues)
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T A B L E 2 (Continued)

Design p0 p1 r1/n1 r/n Pr (H1|R) Pr (H1|r,n) PET0 PET1 ESS0 ESS1 𝜶 𝜷 𝜷𝚫 p̂

BET 13/26 32/44 0.046 0.620 0.423 0.009 36.4 43.8 0.002 0.583 0.294 0.727

DTD 10/20 35/46 0.073 0.794 0.412 0.017 35.3 45.6 0.000 0.767 0.489 0.761

PPD 7/15 27/45 0.003 0.068 0.304 0.015 35.9 44.5 0.112 0.063 0.012 0.600

Simon 10/18 27/45 0.006 0.068 0.593 0.060 29.0 43.4 0.100 0.094 0.025 0.600

m-Simon 10/15 31/44 0.044 0.491 0.849 0.278 19.4 35.9 0.004 0.518 0.260 0.705

BETEC 0.60 0.80 7/11 36/44 0.030 0.559 0.467 0.050 28.6 42.3 0.002 0.533 0.209 0.818

𝛿-BETEC 8/13 36/44 0.030 0.559 0.426 0.030 30.8 43.1 0.002 0.531 0.207 0.818

BET 15/24 36/43 0.042 0.677 0.511 0.013 33.3 42.8 0.000 0.650 0.313 0.837

DTD 8/14 40/46 0.067 0.856 0.308 0.012 36.2 45.6 0.000 0.841 0.546 0.870

PPD 9/15 32/45 0.002 0.062 0.390 0.018 33.3 44.5 0.080 0.062 0.008 0.711

Simon 10/15 31/44 0.004 0.052 0.597 0.061 26.7 42.2 0.085 0.088 0.019 0.705

m-Simon 14/18 36/44 0.034 0.559 0.906 0.284 20.4 36.6 0.001 0.569 0.248 0.818

aThe frequentist error rates (𝛼, 𝛽, 𝛽Δ) under the m-Simon design are calculated based on (p0,p1,p1 + 0.05).

T A B L E 3 Comparisons of the BETEC, 𝛿-BETEC, BET designs and Simon’s design based on the
gemcitabine-eribulin combination trial in terms of design parameters, posterior probabilities of H0 and H1

Designs r1/n1 r/n Pr (H1|y1 < r1,n1) Pr (H0|r1,n1) Pr (H1|R) Pr (H1|r,n)

BETEC 1/7 13/24 0.004 0.497 0.096 0.655

𝛿-BETEC 1/7 14/26 0.004 0.497 0.092 0.649

BET 2/9 14/26 0.006 0.322 0.094 0.649

Simon 2/7 7/21 0.019 0.203 0.017 0.067

Under Simon’s design, even if we assume all three additional patients are responders and remove them from the total
number of responses, we can still draw a conclusion that the gemcitabine-eribulin combination is promising (as we
observed 12− 3= 9 responses among 21 patients). However, if we adopt Beta(1, 1) as the prior distribution of the response
rate p and compute the posterior probability of H1 based on the trial results (y, n)= (12, 24), Pr (H1|y,n) = 0.5, which is
still not high enough.

We then apply the BET, BETEC, and 𝛿-BETEC designs to this trial. For all the three designs, we adopt
a non-informative prior Beta(1,1) and set 𝜋1 = 𝜋2 = (0.5, 0.6). We use (𝓁1,𝓁2)= (0.18, 0.16) for the BET design,
(a1, a2)= (0.005, 0.1) for the BETEC design and (b1, b2)= (0.005, 0.15) for the 𝛿-BETEC design. The results in Table 3 show
that the posterior probability of H1 under the minimally required level of Simon’s design at the end of stage 2 is 0.067,
which is rather low. Thus based on Simon’s design, even if we declare the combination as promising, it is still very likely
that the subsequent phase III trial may end up with a failure. The BETEC and 𝛿-BETEC designs require one response
among seven subjects in the first stage, while the BET design requires two responses out of nine subjects. Neverthe-
less, this trial would proceed to the second stage under all the three Bayesian designs. At stage 2, the BETEC design
requires 13 responses out of 24 patients and this trial fails to reach this critical value. Under the BETEC design, the
gemcitabine-eribulin combination is not promising for csiplatin-ineligible patients with metastatic urothelial carcinoma
and should not proceed into a phase III study. Under the 𝛿-BETEC and BET designs, 14 responses are required out of 26
subjects, which is also more stringent than Simon’s design.

4.2 Recurrent glioblastoma trial

Silvani et al36 reported a phase II study on the efficacy of ortataxel in recurrent glioblastoma (GBM). The primary objective
of the study was to evaluate the activity of ortataxel in terms of progression free survival (PFS) at 6 months after the
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T A B L E 4 Comparisons of the
BETEC, 𝛿-BETEC, BET designs, and
Simon’s design based on the recurrent
glioblastoma trial in terms of design
parameters, posterior probabilities of
H0 and H1 and the minimally required
response rates p̂

Designs r1/n1 r/n Pr (H1|y1 < r1,n1) Pr (H0|r1,n1) p̂

BETEC 7/37 22/62 0.002 0.500 0.355

𝛿-BETEC 7/36 20/56 0.002 0.467 0.357

BET 7/35 21/58 0.003 0.434 0.362

Simon 7/33 16/58 0.005 0.367 0.276

enrollment. The trial adopted Simon’s minimax two-stage design under which the type I and type II error rates were both
fixed as 10%. The trial was built upon the hypothesis test H0 : p≤ 0.2 versus H1 : p≥ 0.35. Under these design parameters,
at the first stage, at least seven responses out of 33 subjects are needed to carry the trial to the second stage. At stage 2, a
total number of patients would be increased to 58 and to declare the drug as promising, at least 16 responders are needed.
This trial was terminated early for futility because there were only four patients alive and free of progression among 35
subjects at the end of the first stage (two additional subjects were for administrative and logistic issues).

As another illustration, we also apply the BETEC, 𝛿-BETEC, and BET designs to this trial. Intuitively, with sim-
ilar sample sizes in the first stage, these three designs would all reject the drug for futility as they are intrinsically
more stringent than Simon’s design. In all the three designs, we use Beta(1, 1) as the prior distribution for the response
rate p and specify (𝜋1, 𝜋2) = (0.5, 0.55). We set (a1, a2)= (0.03, 0.19) for the BETEC design, (b1, b2)= (0.01, 0.05) for the
𝛿-BETEC design, and (𝓁1,𝓁2)= (0.09, 0.095) for the BET design. The results in Table 4 show that as expected under
the three designs, the trial would be terminated early for futility. With comparable sample sizes at stage 1, Simon’s
design only needs seven responses to continue the trial, while the three Bayesian designs require 10 responses. We
also investigate the minimal response rates to declare the drug as promising at the end of stage 2 under the four
designs. Simon’s design only needs p̂ = r∕n = 0.276 to claim the drug to be promising, which is not high enough
because the target response rate is p1 = 0.35. As for the Bayesian designs, they all require similar minimal response rates
above 0.35.

5 DISCUSSION

As an extension of the BET design, we propose the BETEC and 𝛿-BETEC designs by replacing the HPD interval length
constraints with two posterior probability constraints, which focus on controlling posterior error rates when rejecting
the drug. Our designs greatly enhance the transparency and interpretability of the design parameters. They inherit the
virtues of the original BET design, which pays more attention to the target response level rather than the uninterest-
ing response level. It helps to reduce the failure rate of the subsequent phase III clinical trial when the drug is declared
as promising. In the meanwhile, the BETEC design is easier to implement compared to the BET design as all the con-
straints for searching boundary values and sample size parameters (r1, n1, r, n) are based on posterior probabilities, and
the pre-determined design parameters (𝜋1, 𝜋2, a1, a2) have intuitive interpretations. In particular, (𝜋1, 𝜋2) are the mini-
mal posterior probabilities of p> p0 and p> p1 we aim to reach when the trial achieves the minimally required level at
stage 1 and stage 2, respectively, while (a1, a2) are the maximal posterior error rates we can tolerate when rejecting the
drug at stage 1 and stage 2, respectively. In this way, we can balance the posterior false positive rate and false negative
rate directly via choosing proper design parameters. To ease the computation, we also propose an alternative 𝛿-BETEC
design which has similar properties to the BETEC design while immensely reducing the computational burden. From a
Bayesian perspective, the BETEC and 𝛿-BETEC designs can incorporate the information of the historical data by selecting
a suitable prior. Furthermore, the extension to other endpoints such as the survival endpoint is straightforward.

According to the extensive simulation results, it is also worth noting that our methods tend to be conservative at stage
1, as PET0 under H0 is not high enough and PET1 under H1 is very low. Such features can help to reduce the risk of
rejecting a promising drug in the first stage and thus reduce the required sample size n1 at stage 1. However, the expected
sample size is not decreased due to the low PETs. Compared with Simon’s design, the low type I error and relatively high
type II error indicate that our methods are more strict to declare the investigational drug as promising. In term of the
minimally required response rate r/n, the BETEC and 𝛿-BETEC designs are not over-strict, as the values of r/n in the
simulation are all marginally larger than the target response rate p1. In this sense, the BETEC and 𝛿-BETEC designs are
more desirable when the positive conclusion of the current trial will directly lead to a large-scale phase III trial, because
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the low false positive rate can help to reduce the risk of the failure of the phase III trial. However, if the current trial will be
followed by another small-scale randomized trial, then Simon’s design is more preferable due to its higher power. Finally,
although our methods are developed from a Bayesian perspective, the commonly used frequentist inference methods (ie,
point estimation and confidence intervals) can still be applied to the data from the trial under the BETEC design.
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APPENDIX A. PROOF OF MONOTONICITY

We assume p∼Beta(a, b), y1|n1 ∼Binomial(p,n1) and p0 ∈ (0,1). We aim to prove the monotonicity of Pr (p > p0|y1,n1)
with respect to y1.

To prove Pr (p > p0|y1,n1) is a non-decreasing function of y1 when p0 ∈ (0, 1), it is sufficient to show Pr (p > p0|y1,n1) −
Pr (p > p0|y1 − 1,n1) ≥ 0 for n1 ≥ y1 ≥ 1. Let G(p0) = Pr (p > p0|y1,n1) − Pr (p > p0|y1 − 1,n1), and it is clear that G(0)= 0
as the support of p is [0,1]. By definition, we have

G(p0) = ∫
1

p0

{
pa+y1−1(1 − p)b+n1−y1−1

B(a + y1, b + n1 − y1)
−

pa+y1−2(1 − p)b+n1−y1

B(a + y1 − 1, b + n1 − y1 + 1)

}
dp,

where B(a,b) is the Beta function, satisfying

B(a + y1 − 1, b + n1 − y1 + 1) =
b + n1 − y1

a + y1 − 1
B(a + y1, b + n1 − y1).

Thus, we obtain

G(p0) = ∫
1

p0

(b + n1 − y1)pa+y1−1(1 − p)b+n1−y1−1 − (a + y1 − 1)pa+y1−2(1 − p)b+n1−y1

(b + n1 − y1)B(a + y1, b + n1 − y1)
dp

= ∫
1

p0

g(p)dp,

where

g(p) =
pa+y1−2(1 − p)b+n1−y1−1{(a + b + n1 − 1)p − (a + y1 − 1)}

(b + n1 − y1)B(a + y1, b + n1 − y1)
.

Note that for p∈ [0, (a+ y1 − 1)/(a+ b+n1 − 1)], g(p)≤ 0; otherwise g(p)> 0. Therefore, G(p0) is a non-decreasing
function of p0. For any p0 ∈ (0,1), we have G(p0)≥G(0)= 0, and thus Pr (p > p0|y1,n1) is a non-decreasing function of y1.


