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Abstract

In the development of new cancer treatment, an essential step is to
determine the maximum tolerated dose (MTD) in a phase I clinical
trial. In general, phase I trial designs can be classified as either model-
based or algorithm-based approaches. Model-based phase I designs
are typically more efficient by using all observed data, while there is
a potential risk of model misspecification that may lead to unreliable
dose assignment and incorrect MTD identification. In contrast, most
of the algorithm-based designs are less efficient in using cumulative
information, because they tend to focus on the observed data in the
neighborhood of the current dose level for dose movement. To use the
data more efficiently yet without any model assumption, we propose a
novel approximate Bayesian computation (ABC) approach to phase I
trial design. Not only is the ABC design free of any dose–toxicity curve
assumption, but it can also aggregate all the available information
accrued in the trial for dose assignment. Extensive simulation studies
demonstrate its robustness and efficiency compared with other phase I
trial designs. We apply the ABC design to the MEK inhibitor selumetinib
trial to demonstrate its satisfactory performance. The proposed design
can be a useful addition to the family of phase I clinical trial designs
due to its simplicity, efficiency and robustness.

Keywords
ABC, Dose finding, Maximum tolerated dose, Oncology trials, Prior
predictive
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Introduction

In oncology research, a phase I clinical trial often aims to determine the
maximum tolerated dose (MTD), which is typically defined as the dose
with the dose-limiting toxicity (DLT) probability closest to the target
toxicity rate.1 In the development of new drugs, phase I clinical trials play
an essential role because the selected MTD will be further investigated in
the subsequent phase II or III trials. Misidentification of the MTD would
lead to an unreliable conclusion and may even cause termination of a trial
immaturely. As a result, this leads to a waste of abundant resources as well
as exposing patients at excessively toxic doses, which violates the ethical
principle. Moreover, as the first-in-human study, subjects available for a
phase I trial are rather limited, and the sample size is typically around 35,2

and thus it is challenging to identify the MTD with such a small sample
size.

Various phase I trial designs have been proposed with the goal to
determine the MTD both efficiently and accurately. Depending on whether
to adopt a model assumption on the dose–toxicity curve or not, these
designs can generally be classified into two branches: the algorithm-
based (model-free or curve-free) and the model-based (often imposing a
parametric model assumption) approaches. In the algorithmic family, the
3 + 3 design3 is the most commonly used one for phase I oncology trials
due to its simplicity and conservativeness.4 However, the 3 + 3 design has
also been criticized for its poor performance due to inefficient use of the
data. Alternatively, a variety of model-free designs have been developed
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to improve the trial efficiency in determining the MTD. Gasparini and
Eisele (2000)5 presented a curve-free method in which the probabilities of
toxicity are directly modeled as an unknown multidimensional parameter.
Ivanova et al. (2007)6 proposed a cumulative cohort design (CCD) where
the dose escalation or de-escalation criterion is based on the Markov
chain theory. To enhance the trial safety, the modified toxicity probability
interval (mTPI) design is proposed using a unit probability mass.7 Under
the Bayesian framework, Liu and Yuan (2015)8 developed the Bayesian
optimal interval (BOIN) design by minimizing the probability of incorrect
dose allocation. Yan et al. (2017)9 proposed the keyboard design by
partitioning the toxicity probability scale into more and shorter intervals.
Enlightened by the uniformly most powerful Bayesian test,10 Lin and
Yin (2018)11 developed the uniformly most powerful Bayesian interval
(UMPBI) design for phase I dose-finding trials.

Along the line of directly modeling the dose–toxicity curve, many
model-based phase I designs have been proposed. The continual
reassessment method (CRM)12,13 is the most popular model-based design,
which typically adopts a single unknown parameter to link the true and
the prespecified toxicity probabilities at different dose levels. Cheung and
Chappell (2000)14 extended the CRM by incorporating weights to account
for the late-onset toxicity outcomes. Another extension of the CRM
focuses on modeling bivariate competing outcomes.15 By incorporating
the Bayesian model averaging (BMA) approach, Yin and Yuan (2009)16

developed the BMA-CRM to overcome the arbitrariness of skeleton
specification (i.e., the prespecified toxicity probabilities of all doses) and
thus enhance the model robustness. Further extensions of the CRM include
O’Quigley and Paoletti (2003),17 Yuan et al. (2007),18 and Wages et
al. (2011)19 among others. Due to safety concerns, the escalation with
overdose control (EWOC)20 is designed to locate the MTD subject to the
constraint that the predicted proportion of patients receiving overdoses
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does not exceed a specified threshold. Without assuming any parametric
model, the nonparametric overdose control design is developed to enhance
model robustness with little sacrifice on trial efficiency.21 For more
detailed discussions on the characteristics of various phase I designs, refer
to Zhou et al. (2018).22

Our work is motivated by a phase I trial on the MEK inhibitor
selumetinib in children with progressive low-grade gliomas (LGG).23

There were three candidate doses in the trial: 25, 33, and 43 mg/m2/dose
bis in die. The target DLT rate was ϕ = 0.25. Originally, the trial adopted
the likelihood-based modified CRM using a two-parameter logistic model
based on dosages adjusted for the body surface area. However, because
the prior information on the dose–toxicity curve is very limited at the
phase I trial stage, model-based designs might be at risk of violating
the parametric assumption, which undermines the efficiency of the dose-
finding procedure. Moreover, with only three doses under investigation,
a parametric model may not fit the data well. On the other hand, if we
choose an algorithm-based method to select a dose for an incoming cohort
of patients, most of the existing methods only consider the data collected
at the current dose level, which weakens the efficiency of the design by
not fully using all the cumulative data in the trial thus far. For example, a
typical interval design determines the next dose level solely based on the
data from the current dose level.

To alleviate the risk of model misspecification and utilize all the
available information accrued in the trial, we develop an approximate
Bayesian computation (ABC) design to identify the MTD. By adopting
the idea from the approximate Bayesian computation sampling methods,24

the ABC design generates the weighted posterior samples based on all
the available data without any complex formulas and dose–toxicity model
assumptions. Based on the weighted samples, decisions among dose
escalation, de-escalation, or retaining the current dose are made for each
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cohort. In this way, our method avoids introducing any explicit dose–
toxicity model, yet can utilize the cumulative information from all dose
levels when selecting the next dose level. Extensive simulation studies
demonstrate that the ABC design is efficient compared with the state-
of-the-art methods, while it is robust due to its model-free or curve-
free feature. The main contributions of our work are twofold. First, we
propose a novel phase I design which is robust and efficient under different
scenarios. Second, by incorporating the ABC sampling into the phase I
design, our work can be easily extended to other more complicated phase
I trials.

The rest of the paper is organized as follows. In Section 2, we introduce
the ABC design for dose finding in phase I clinical trials. We present the
simulation studies to evaluate the operating characteristics of the ABC
design and compare it with several well-known phase I designs in Section
3. An application to the phase I trial of the MEK inhibitor selumetinib is
provided in Section 4. The paper is concluded with a brief discussion in
Section 5.

Methodology

Suppose that a phase I clinical trial aims to investigate K dose levels with
the corresponding DLT rates p1 < · · · < pK . The target toxicity rate is
denoted as ϕ. After enrolling and treating the first n cohorts of patients, the
current dose level is denoted by dn. Thus far, we observe the cumulative
data Yn = {yk}Kk=1 and Mn = {mk}Kk=1, where yk represents the number
of observed DLTs and mk represents the number of patients treated at dose
level k.

The main goal of the ABC design is to adopt all the available
information when deciding the dose level for the next cohort without
imposing any explicit dose–toxicity model assumption. In the Bayesian
framework, we first assign a prior π(p1, . . . , pK) on {pk}Kk=1, and then we
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can update the posterior distribution of (p1, . . . , pK) as

π(p1, . . . , pK |Yn,Mn) ∝ P (Yn|{pk}Kk=1,Mn)π(p1, . . . , pK),

where P (Yn|{pk}Kk=1,Mn) is the likelihood function. Based on the
posterior distribution, the next dose level can be selected accordingly.
The major difficulty lies on how to choose a suitable and simple
prior π(p1, . . . , pK) while taking the monotonicity constraint p1 < · · · <
pK into account. The dilemma is that a parametric model assumption
typically undermines the robustness of the design, while due to the
monotonicity constraint, the specific form of the prior π(p1, . . . , pK)

without such a parametric model assumption can be complicated. The
unusual complexity of the prior would also diminishes the flexibility
of the design. Further, it causes difficulties in calculating the posterior
distribution as well as the subsequent Bayesian inference.

Approximate Bayesian Computation

To circumvent the aforementioned problem, we adopt the idea from
the approximate Bayesian computation (ABC) sampling methods.24 The
ABC methods are typically used to handle complex models, where
the evaluation of the likelihood function is computationally costly or
elusive. In such cases, the Bayesian inference with a closed-form posterior
distribution is prohibitive. The ABC methods bypass the evaluation of the
likelihood function with Monte Carlo simulations.

Suppose that we are interested in obtaining the posterior samples of
parameter θ given the data D and prior π(θ). A simple ABC method,
known as the ABC rejection algorithm25, is described as follows:

1. Draw a sample θ̂ from the prior π(θ).

2. Given the sample θ̂, generate data D̂ under the likelihood model
P (D|θ) using the prior predictive distribution.
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3. If the generated data D̂ is close to the observed data D under some
prespecified distance measure, we keep the sample θ̂ as the posterior
sample; otherwise, the sample is rejected and discarded.

4. The procedure is repeated for a large number of times to obtain
adequate posterior samples of θ.

In the phase I trial setting, the evaluation of the likelihood is rather
simple, while the prior model is complicated without a closed form
due to the monotonicity constraint. On the other hand, the monotonicity
constraint is can be naturally incorporated when we implement Monte
Carlo simulations. For example, we can first generate the samples without
any constraint and then sort them in an ascending order to preserve
the monotonicity in the prior samples of {pk}Kk=1. In Section B of
the Appendix, we present a toy example of using different approaches
to sampling multivariate random variables under the monotonicity
constraint, which shows that Monte Carlo simulation gives a simple and
efficient way to solve such monotonically constrained sampling problem.
Therefore, the ABC methods provide a very simple solution to obtain the
constrained posterior samples of {pk}Kk=1 in a Monte Carlo manner.

Optimal Dose Selection

With the ABC rejection algorithm in hand, we are still not ready to
obtain the posterior samples of {pk}Kk=1 for a phase I trial. The main
challenge lies in the low efficiency of the ABC rejection method, because
its acceptance rate can be very low which makes the procedure rather slow
to obtain an adequate number of posterior samples for reliable and robust
inference. Moreover, under the ABC rejection method, all the θ̂’s leading
to the generated D̂’s inconsistent with the observed data D are equally
discarded. However, even the discarded θ̂’s can still provide some useful
information about the posterior distribution. For example, some generated
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data D̂’s may be very different from the original data D, while some may
only moderately deviate from D, and thus we should not blindly discard
the corresponding θ̂’s without discrimination.

Considering both issues as mentioned above (the low acceptance rate
and equally discarding unqualified posterior samples), we propose to
adopt the weighed ABC sampling for a phase I trial as follows:

1. Select a suitable prior distribution π(p1, . . . , pK) and a distance
measure ρh(·, ·).

2. Generate the prior samples {pk,(j)}Kk=1 for a large number J times
from π(p1, . . . , pK).

3. Given the prior samples {pk,(j)}Kk=1, we generate the corresponding
data, Yn,(j) = {yk,(j)}Kk=1 with yk,(j) ∼ Binom(pk,(j),mk).

4. Based on the generated data {Yn,(j)}Jj=1, the weight for each sample
{pk,(j)}Kk=1 can be obtained as w(j) = ρh(Yn,(j), Yn), where Yn =

{yk}Kk=1 is the originally observed data.

5. Use the weighted samples {(w(j), {pk,(j)}Kk=1)}Jj=1 as the posterior
samples for statistical inference.

Motivate by the Gaussian kernel, we choose the distance measure as

ρh(Yn,(j), Yn) = exp

{
−
∑K

k=1(yk,(j)/mk − yk/mk)
2

h

}
,

where h is the bandwidth and its selection will be discussed in Sensitivity
Analysis Section.

The above procedure is essentially referred to as the ABC importance
sampling when the proposal density is taken as the prior distribution.26

Therefore, it is guaranteed that the weighed samples are approximately
generated from the posterior distribution. This weighted procedure
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overcomes the low acceptance rate problem of the ABC rejection method,
because it adopts all the prior (weighted) samples for the posterior
inference. We then estimate the toxicity rate for dose level k as

p̂n,k = S
(
{pk,(j)}Jj=1, {w(j)}Jj=1

)
,

where S(·, ·) can be any function yielding a reasonable estimator of
p̂n,k. By default, we take S(·, ·) as the weighted median due to its
robustness. The weighted median function is the 50th weighted percentile
of {(w(j), pk,(j))}Jj=1 obtained as follows:

• Sort {pk,(j)}Jj=1 in an ascending order to obtain {p̃k,(j)}Jj=1 attached
with the corresponding weights {w̃(j)}Jj=1.

• The weighted median is selected as p̃k,(l) satisfying∑l−1
j=1 w̃(j)∑J
j=1 w̃(j)

≤ 1

2
and

∑J
j=l+1 w̃(j)∑J
j=1 w̃(j)

≤ 1

2
.

We adopt the weighted median because it is more robust estimator
compared with the weighted mean and the posterior mode may be
ambiguous due to the multi-modal posterior distribution. More detailed
discussions on S(·, ·) with a numerical study are given in Section C of
the Appendix. The optimal dose for cohort n+ 1 based on the cumulative
data up to cohort n, Yn and Mn, is defined as

d∗n+1 = argmink=1,...,K |p̂n,k − ϕ| .

Prior Elicitation

While the ABC design is flexible with respect to the choice of the prior
π(p1, . . . , pK), the prior samples {pk,(j)}Kk=1 play an important role for
efficiently identifying the MTD. To enhance the robustness of the ABC
design, we should generate samples without any parametric dose–toxicity
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assumption, for which an intuitive way is to first generate K samples from
Uniform(0, 1) and then sort them in an ascending order. However, this
method does not take the target rate ϕ into consideration and, as a result,
the prior samples are less informative and lead to poor performance.

Before conducting a phase I trial, we are typically provided with
the target toxicity rate ϕ as well as the toxicity probability monotone
constraint. Thus, it is desirable to encode both parts of information in the
prior to obtain more informative samples. The main goal of the phase I
design is to find the dose level k whose DLT rate is closed to ϕ. Because
each dose could possibly be the MTD, we can generate prior samples
of p1, . . . , pK from K + 1 possible models {Mk}Kk=0, where Mk is the
model that dose level k is the MTD while M0 indicates that all the dose
levels are overly toxic (i.e., no MTD). This way of incorporating ϕ into
the model provides more informative prior samples for the ABC design.

Consequently, we propose to generate the prior samples as follows.

1. Considering the trade-off between computation and performance,
we generate 20000 prior samples of p1, . . . , pK from each model
Mk, which leads to a total number of J = 20000× (K + 1) prior
samples. The prior samples from π(p1, . . . , pK) are obtained from
all (K + 1) models, {Mk}Kk=0. These prior samples can be generated
before the trial conduct and saved for repeated use.

2. Given Mk with k ̸= 0,

(a) Set dose level k as the target with a DLT rate pk,(j) ∼
Uniform(ϕ− δ, ϕ+ δ) where δ is a prespecified small number.

(b) We independently generate k − 1 samples from
Uniform(0, ϕ− δ) and sort them in an ascending order to
obtain {p1,(j), . . . , pk−1,(j)}.
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(c) We independently generate K − k samples from Uniform(ϕ+

δ, 2ϕ) and sort them in an ascending order to obtain
{pk+1,(j), . . . , pK,(j)}.

3. Under M0, we independently generate K samples from
Uniform(ϕ+ δ, 2ϕ) and sort them in an ascending order to
obtain {p1,(j), . . . , pK,(j)}.

The neighborhood parameter δ controls the distinguishability of the
target dose level in the generated prior samples. A larger value of δ

indicates that the MTD is easier to be determined in the prior samples,
and vice versa. In Sensitivity Analysis Section, we conduct extensive
simulation studies to show that the ABC design is not sensitive to the
choice of δ, and we recommend δ = 0.1 as a default value in practice.

Dose-finding Algorithm

To ensure the safety and benefit for the patients, we further impose an early
stopping criterion in the ABC design. We terminate the trial when there is
strong evidence indicating the lowest dose level is still overly toxic. We
assign Jeffreys’ Beta(0.5, 0.5) prior distribution to the DLT rate p1, and
terminate the trial if Pr(p1 > ϕ|y1,m1 ≥ 3) > 0.95.

The dose-finding procedure of the ABC design is detailed as follows.

1. Treat the first cohort of patients at the lowest or the physician-
specified dose level.

2. After enrolling n cohorts, select the optimal dose level d∗n+1 =

argmink=1,...,K |p̂n,k − ϕ| based on (1).

3. According to the optimal dose level d∗n+1,

(a) If dn > d∗n+1, then dn+1 = dn − 1.

(b) If dn = d∗n+1, then dn+1 = dn.
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(c) If dn < d∗n+1, then dn+1 = dn + 1.

4. The trial can be either stopped after exhaustion of the maximum
sample size, or be terminated early for safety if the lowest dose
level is too toxic by the early stopping rule, Pr(p1 > ϕ|y1,m1 ≥
3) > 0.95.

At the end of the trial, the observed data (YN ,MN) are collected, where
N is the total number of cohorts. The MTD is then estimated with another
round of ABC simulation, i.e., d∗ is finally selected as

d∗ = argmink=1,...,K |p̂N,k − ϕ| .

If the DLT rate of the recommended MTD must be lower than the target,
we can easily make a modification by first identifying d∗, while if d∗ is
higher than the target then we simply choose the next lower dose as the
MTD.

In the dose-finding algorithm, we adopt the same early termination rule
as those in most of the interval designs8,11 for a fair comparison. However,
as our prior samples involve model M0 (i.e., all doses are overly toxic), it
is possible to construct our own early termination rule as∑J

j=1w(j)I(p1,(j) > ϕ)∑J
j=1w(j)

> t,

where t is the threshold value, e.g., t = 0.95.

Simulation Studies

Sensitivity Analysis

We investigate the effect of the parameters δ and h on the performance
of the ABC design with the analysis of variance (ANOVA) method.27

We randomly generate dose–toxicity scenarios following the procedure

Prepared using sagej.cls



14 Journal Title XX(X)

in Paoletti et al. (2004),28 as described in Section A.2 of the Appendix. To
conduct a comprehensive analysis with randomly generated scenarios, we
consider four influential factors in phase I trials, including the average
probability difference ∆ around the target, the number of dose levels
K, the sample size as well as the target toxicity rate ϕ. The first three
factors affect the difficulty of the MTD-identification task, where larger ∆,
smaller K, and larger sample size would typically result in higher MTD
selection percentages. The possible levels of the four factors are listed
in Table 1, which yields 4× 3× 8× 3 = 288 different configurations.
Under each configuration, we investigate the performance of the ABC
design via 1000 randomly generated scenarios when δ takes a value of
{0, 0.05, 0.10, 0.15, 0.20} or δ is randomly selected from Uniform(0, 0.2)

and h is selected from {0.1, 0.05, 0.01, 0.005}.

After obtaining the percentage of MTD selection under each
configuration with different values of (δ, h), we perform ANOVA with
regard to these percentages using the simulation factors including all the
pairwise interactions in Table 1. In the ANOVA, we also regard the tuning
parameters δ and h as two additional factors in the evaluation of dose-
finding performance. Thus, the degree of freedom of the total variance for
ANOVA is 288× 6× 4− 1 = 6911. Among the six influential factors, the
neighborhood parameter δ has the least effect on the performance of the
ABC design in terms of the mean squared error (MSE). In particular, δ
only accounts for 0.64% (0.54/83.39) of the MTD selection percentage
variance, which indicates the ABC design is robust to the choice of δ.
The performance of the ABC design is more sensitive to the bandwidth
parameter h, because it is the second most influential factor on the MTD
selection percentage.

From Table 1, it is clear that the average probability difference ∆ around
the target is the dominating factor for the percentage of MTD selection,
as it contributes the largest MSE (significantly larger than the second)
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in the ANOVA. We further study the effect of the tuning parameters
δ and h on the MTD selection percentage under different values of
∆. Figure 1 shows the MTD selection percentage versus the tuning
parameters δ and h for ∆ = {0.05, 0.07, 0.10, 0.15}. Under various levels
of trial difficulty (the difficulty of MTD identification decreases as ∆

increases), δ shows relatively minor effect on the performance of the ABC
design, demonstrating the insensitivity of the design to δ ∈ [0.05, 0.20].
As for the bandwidth parameter h, it is clear that a larger value of h would
undermine the performance of the ABC design. When h is decreased
close to 0.01, the performance of the ABC design is saturated and further
reduction of h would not improve the trial performance. In practice, it is
recommended to choose any value of δ ∈ [0.05, 0.20] and h = 0.01 for the
ABC design, and by default we set δ = 0.1 and h = 0.01.

Evaluation under Random Scenarios

To make an extensive comparison of the ABC design with existing
methods, we select six state-of-the-art phase I designs, including the
CRM design with the power model whose model skeleton is selected
using the method of Lee and Cheung (2009),29 the CCD design6 which
is based on the Markov chain theory, the modified toxicity probability
interval (mTPI) design,7 the Bayesian optimal interval design (BOIN),8

the keyboard design,9 as well as the uniformly most powerful Bayesian
interval (UMPBI) design.11 Among the six designs, the CRM is the only
model-based one, while the other five are algorithm-based methods and,
more specifically, they are all interval designs. Unless otherwise stated, all
the six existing designs adopt the default parameters following the original
papers and we utilize the same early stopping rule for the five interval
designs and the ABC design, i.e., if Pr(p1 > ϕ|y1,m1 ≥ 3) > 0.95, we
terminate the trial for safety. For the early termination rule under the CRM,
the posterior probability of p1 > ϕ is calculated based on the CRM model
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and the threshold probability is still set at 0.95. The detailed settings for
the six existing designs are given in Section A.1 of the Appendix.

We investigate five dose levels for each trial and set the target toxicity
rate ϕ = 0.3 and 0.2, respectively. The sample size is 30 and patients
are treated in a cohort size of 3. To avoid cherry-picking, we randomly
generate dose–toxicity scenarios following the procedure in Paoletti et al.
(2004),28 which is detailed in Section A.2 of the Appendix. The average
probability difference ∆ around the target is controlled at 0.05, 0.07,
0.1 and 0.15 respectively, and under each value of ∆, we replicate 5000

simulations.

Four summary statistics are adopted to evaluate the performances
of the seven designs under comparison. The two main measurements,
reflecting the accuracy and efficiency of a design, are the percentage
of MTD selection and the percentage of patients treated at the MTD
(MTD allocation), for which larger values are preferred. The remaining
two measurements quantify the safety aspects of a trial, including
the percentage of trials that select overdoses as the MTD (overdose
selection), and the percentage of patients allocated to overdoses (overdose
allocation). A design with smaller values of the two safety statistics would
be considered more ethical and desirable. To quantify the variability, we
adopt the bootstrap method to construct the 95% confidence intervals for
each measurement, i.e., we resample 5000 trial results with replacement
from a total of 5000 repetitions (random scenarios) and repeat the
resampling procedure for 1000 times to obtain the confidence intervals.

The results with ϕ = 0.3 are shown in Figure 2. The performances
of all the designs improve as ∆ increases. The efficiency of using all
the available data under the ABC and CRM designs is reflected by
the MTD allocation metric, for which both designs yield higher MTD
allocation percentages compared with the other interval designs. The
gap becomes more significant when ∆ increases. In terms of the MTD
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selection percentage, both the ABC and CRM designs are superior to the
interval designs when ∆ is small; the gap diminishes when ∆ becomes
large. When ∆ is large, the information from the MTD neighborhood
data may be adequate to identify the MTD well, and thus using all the
available data does not boost the performance greatly. Under the setting
of ∆ = 0.15, BOIN performs best, while CRM yields the lowest MTD
selection percentage compared with the counterparts. The performances of
the ABC design are robust across all different values of ∆, which reveals
the advantage of imposing no dose–toxicity assumption in ABC.

With regard to the two safety measurements, the CRM has the
highest percentages of overdose selection and overdose allocation among
the seven designs. The CCD design performs best in terms of the
safety metrics, while its performances are worse for the two accuracy
measurements. The other five designs are comparable in terms of the
safety metrics.

The results with ϕ = 0.2 are presented in Figure 3. Overall, the
performances of the seven designs are similar to those under the settings
of ϕ = 0.3. However, when ϕ = 0.2, the mTPI design appears to be very
aggressive. The mTPI yields similar performances to the ABC and CRM
designs in terms of the MTD selection and allocation metrics, while it
sacrifices safety significantly in contrast with other methods. In summary,
numerical comparisons with the six well-known methods demonstrate the
robustness and efficiency of the ABC design.

Evaluation under Fixed Scenarios

To gain more insight into the ABC design, we evaluate its performance
under five representative fixed scenarios. For an objective comparison with
no cherry-picking, we adopt the fixed scenarios in Table 1 of Cheung and
Chappell (2000).14 The number of dose levels is K = 6 and the target
toxicity rate is ϕ = 0.2. The comparisons are again made with the six
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phase I designs under the similar settings as introduced in Section A.1
of the Appendix. The total sample size is 36 and patients are treated with
a cohort size of 3. We use the same early stopping rules as those under the
random scenarios. Under each scenario, we replicate 5000 simulations.

The detailed information and results under the fixed scenarios are
summarized in Table 2. Under scenario 1, the CRM has the best
performance, while the other designs yield comparable results. In scenario
2, all the dose levels are overly toxic, and the ABC design and all interval
designs show satisfactory and comparable results by early stopping the
trials, but the CRM yields a slightly lower non-selection percentage
(53.4%) compared with others. The ABC design leads to the best
performance under both scenarios 3 and 4 and the gaps of MTD selection
percentages are around 10% under scenario 3. Under scenario 5 where the
last dose level is the MTD, the mTPI design is substantially better than
others, while it tends to select over-toxic dose level as the MTD as shown
in scenarios 1, 3 and 4. Except for the mTPI design, the ABC design has
slightly higher over-dose selection percentages under scenarios 1, 3 and 4,
while the gaps are marginal. Overall, the ABC design yields satisfactory
performances for all of the five fixed scenarios.

Real Trial Application

As an illustration, we apply the ABC design to the aforementioned phase
I trial on the MEK inhibitor selumetinib in children with progressive
LGG. The DLT outcomes were defined as any grade 4 toxicity (except
lymphopenia), grade 3 neutropenia with fever, grade 3 thrombocytopenia
with bleeding, any grade 3 or 4 toxicity possibly related to selumetinib,
or any grade 2 toxicity persisting ≥ 7 days that was medically significant
or intolerable enough to interrupt or reduce the dose. Originally, the trial
evaluated 37 patients to estimate the MTD with the target toxicity rate
ϕ = 0.25. Patients were assigned in a cohort size of 3 to one of the three
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dose levels of the MEK inhibitor selumetinib {25, 33, 43} mg/m2/dose bis
in die via the CRM design based on the two-parameter logistic model. The
observed data at dose levels 1–3 from the original clinical trial were

{y1, y2, y3} = {3, 4, 2}

{m1,m2,m3} = {24, 10, 3}.

Based on the observed data in the trial, the estimated DLT rates were
{0.125, 0.400, 0.667}, and the MTD selected using the CRM method was
dose level 1.23

We applied the ABC design with δ = 0.1 and h = 0.01 to this trial based
on the estimated DLT rates. There were 13 cohorts in total where the last
cohort contained only one subject. For comparison, we also include the
CRM design using the two-parameter logistic model, for which the detail
is given in Section A.1 of the Appendix. The entire procedure is repeated
for 5000 times and the results are presented in Table 3. It is clear that the
ABC design yields comparable performances to the CRM design under
this trial example. Nevertheless, the ABC design is model-free, and thus
it is more robust and easier to use in practice.

To better demonstrate the property of the ABC design, we present the
detailed trial flow of one specific trial selected from the 5000 repetitions.
The patient allocations and outcomes are shown in Figure 4. The trial
started by treating the first cohort of patients at the lowest dose level. In the
first cohort, there was no DLT observed, which yielded the estimated DLT
rates {p̂1,k}3k=1 = (0.08, 0.22, 0.40). Thus, the trial decided to escalate
to dose level 2 for the second cohort, where we observed two DLTs
among three patients, resulting in the estimated DLT rates {p̂2,k}3k=1 =

(0.18, 0.37, 0.45). Consequently, the next cohort was assigned back to
dose level 1, where again no patient experienced the DLT, leading to
{p̂3,k}Kk=1 = (0.12, 0.33, 0.44). Consequently, the trial escalated to dose
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level 2 for cohort 4 and one out of the three patients experienced the DLT,
which led to {p̂4,k}Kk=1 = (0.11, 0.33, 0.44). As a result, the trial remained
at dose level 2 for the next cohort, but two DLT outcomes were observed
among the three patients and thus the trial de-escalated back to dose level
1. All the remaining cohorts were assigned to dose level 1. Finally, the
observed data at dose levels 1–3 were

{y1, y2, y3} = {3, 5, 0}

{m1,m2,m3} = {28, 9, 0}.

Upon the completion of the trial, we selected dose level 1 (i.e., the dose
of 25 mg/m2/dose bis in die) as the MTD, which is consistent with the
original selection by the CRM design.23

Conclusion

We have proposed a new phase I design for identifying the MTD using the
approximate Bayesian computation method. The ABC design possesses
the merits of both model-free and model-based designs simultaneously.
Because it is model-free, there is no need to impose any assumption on
the dose–toxicity curve, which avoids the risk of model misspecification.
Similar to the model-based methods, the ABC design is also efficient by
aggregating all the available information when deciding dose assignment
for each new cohort. As demonstrated by simulation studies, the ABC
design performs well in terms of both the efficiency and robustness in
phase I trials. Compared with other phase I designs, the ABC design
shows advantages in terms of the MTD selection and patient allocation
under the random scenarios. There are two tuning parameters δ and h in
the ABC design. The neighborhood parameter δ has rather minor effect
on the design performance, as shown by the comprehensive simulation
studies and ANOVA in Sensitivity Analysis Section, while the bandwidth
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parameter h can be simply fixed at h = 0.01 to achieve satisfactory
performance. In practice, the ABC design is easy to use, because there
is no need to carry out the extensive parameter calibration prior to the
trial conduct. Therefore, the ABC design can be broadly used in phase
I clinical trials due to its robust and efficient properties as well as the
ease of implementation. Under some cases in the simulation studies,
our design shows a slightly higher but acceptable overdose selection
percentage compared with existing phase I designs as a sacrifice for
higher MTD selection and MTD allocation percentages. This is a trade-
off often encountered in dose finding: by exploring more doses, it would
help to pin down the MTD more accurately, while at the same time more
patients might be put at the risk of exploring untried (higher) dose levels.
The ABC design does not allow inserting some intermediate dose level
during the trial, because a dose–toxicity model is typically needed for
such dose insertion. Nevertheless, one possibility along this direction is to
incorporate a working model to pin down the MTD more precisely through
interpolation and dose insertion.

By incorporating the ABC sampling, our design can be easily extended
to other more complicated phase I trials. To account for late-onset
outcomes, the ABC design can be combined with the fractional scheme30

in a straightforward way. The only modification is to tune the bandwidth
parameter h under the late-onset context. To accommodate the efficacy
outcomes, we can introduce the admissible set A and use a beta–binomial
model to estimate the efficacy rates and thus deliver decisions through
a trade-off between toxicity and efficacy. The ABC design can also be
extended to the dose combination trials with an adaptation on generating
prior samples, which warrants further investigation.

The implementation of the ABC design is simple and fast due to the fact
that the prior samples can be generated beforehand. An application of our
ABC design for dose finding (https://github.com/JINhuaqing/ABC) has
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been developed, where users can set various customized configurations
for their trials and obtain visualization results of the ABC design. The
R scripts for simulation studies as well as the real data application are
available at https://github.com/JINhuaqing/ABC-simu.
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Figure 1. The MTD selection percentage versus the neighborhood parameter δ (left) and
bandwidth parameter h (right) under the probability difference around the target
∆ = {0.05, 0.07, 0.10, 0.15}. We set δ = {0, 0.05, 0.1, 0.15, 0.2} respectively and also
consider the case of randomly choosing δ from Uniform(0, 0.2) and h takes a value of
{0.005, 0.01, 0.05, 0.1}.
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(a) ∆ = 0.05 (b) ∆ = 0.07

(c) ∆ = 0.10 (d) ∆ = 0.15

Figure 2. Simulation results with sample size 30 based on 5000 randomly generated
dose–toxicity scenarios under the average probability difference of ∆ = 0.05, 0.07, 0.10 and
0.15 around the target toxicity probability ϕ = 0.30, respectively. The error bar represents the
95% confidence interval for each measurement.
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(a) ∆ = 0.05 (b) ∆ = 0.07

(c) ∆ = 0.10 (d) ∆ = 0.15

Figure 3. Simulation results with sample size 30 based on 5000 randomly generated
dose–toxicity scenarios under the average probability difference of ∆ = 0.05, 0.07, 0.10 and
0.15 around the target toxicity probability ϕ = 0.20, respectively. The error bar represents the
95% confidence interval for each measurement.
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Figure 4. Patient allocations and outcomes by the ABC design for the real trial illustration
using a representative trial among the 5000 repetitions. The ABC recommended MTD is dose
level 1.
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Table 1. The simulation factors that may affect the dose-finding performance of phase I trial
design and the results of ANOVA in terms of the percentage of MTD selection. The ANOVA
also includes all the pairwise interactions between the five simulation factors.

Factors Levels of factor DF SS MSE

Average probability difference around ϕ (∆) {0.05, 0.07, 0.10, 0.15} 3 65.35 21.78
Bandwidth parameter h {0.1, 0.05, 0.01, 0.005} 4 4.32 1.44
Sample size {18, 24, . . . , 60} 7 5.58 0.80
Number of dose levels K {3, 5, 7} 2 0.81 0.40
Target toxicity probability ϕ {0.25, 0.30, 0.33} 2 0.34 0.17
Neighborhood parameter δ {0.0, 0.05, 0.10, 0.15, 0.20, random} 5 0.54 0.11

Total variance 6911 83.39
DF: degree of freedom; SS: sum of squares; MSE: mean squared error (MSE=SS/DF)
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Table 2. The percentages of MTD selection (the numbers of patients treated at each dose)
under the ABC design in comparison with the BOIN, CCD, CRM, Keyboard, mTPI and UMPBI
designs under six fixed scenarios with the target toxicity probability 0.20 in boldface when
sample size is 36. None represents the percentage of trials of non-selection due to early
stopping.

Dose Level DLT None
Design 1 2 3 4 5 6 (%) (%)
Scenario 1 0.05 0.10 0.20 0.30 0.50 0.70
ABC 1.1 (4.2) 21.3 (9.0) 49.7 (12.8) 25.1 (7.9) 2.0 (1.7) 0 (0.1) 19.4 0.8
BOIN 0.8 (6.1) 25.0 (11.1) 52.0 (11.8) 20.4 (5.5) 1.5 (1.2) 0.1 (0.1) 17.1 0.2
CCD 3.2 (6.8) 30.1 (11.9) 49.0 (11.8) 16.1 (4.5) 1.2 (0.9) 0 (0.1) 16.0 0.3
CRM 0.8 (5.2) 22.2 (9.9) 56.5 (13.2) 19.7 (6.5) 0.8 (1.1) 0 (0.1) 18.0 0.0
Keyboard 1.4 (6.2) 25.0 (11.2) 52.1 (11.7) 19.8 (5.5) 1.5 (1.3) 0 (0.1) 17.0 0.2
mTPI 1.0 (4.8) 17.3 (8.3) 46.0 (12.5) 33.1 (8.3) 2.3 (1.9) 0 (0.1) 19.8 0.3
UMPBI 0.7 (5.9) 24.7 (10.8) 50.5 (12.0) 22.1 (5.8) 1.6 (1.3) 0.1 (0.1) 17.4 0.2
Scenario 2 0.30 0.40 0.52 0.61 0.76 0.87
ABC 39.1 (16.9) 3.7 (4.5) 0.1 (0.8) 0 (0.1) 0 (0) 0 (0) 32.7 57.2
BOIN 37.4 (18.6) 3.5 (3.6) 0.1 (0.5) 0 (0) 0 (0) 0 (0) 32.3 58.9
CCD 39.6 (19.9) 2.5 (2.8) 0.1 (0.4) 0 (0) 0 (0) 0 (0) 31.6 57.9
CRM 44.4 (22.5) 2.1 (3.2) 0.1 (0.6) 0 (0.1) 0 (0) 0 (0) 31.7 53.4
Keyboard 38.9 (18.8) 3.4 (3.7) 0.1 (0.5) 0 (0) 0 (0) 0 (0) 32.0 57.6
mTPI 36.6 (17.0) 7.2 (5.5) 0.3 (0.8) 0 (0.1) 0 (0) 0 (0) 33.3 55.9
UMPBI 39.8 (18.9) 3.5 (3.8) 0.1 (0.6) 0 (0) 0 (0) 0 (0) 32.1 56.6
Scenario 3 0.05 0.06 0.08 0.11 0.19 0.34
ABC 0.3 (3.8) 1.4 (4.4) 4.6 (5.2) 23.3 (8.1) 54.0 (11.1) 15.6 (3.3) 14.0 0.8
BOIN 0.3 (5.2) 3.3 (5.8) 10.2 (6.6) 27.5 (7.6) 43.0 (7.1) 15.3 (3.6) 12.8 0.3
CCD 1.8 (5.9) 7.8 (6.5) 14.6 (6.9) 27.6 (7.4) 37.4 (6.4) 10.4 (2.8) 11.7 0.3
CRM 0.2 (4.5) 3.1 (5.2) 11.6 (6.6) 29.2 (8.2) 43.2 (8.0) 12.7 (3.7) 13.1 0.1
Keyboard 0.5 (5.2) 3.5 (5.7) 10.6 (6.7) 27.0 (7.6) 43.2 (7.1) 15.0 (3.6) 12.8 0.3
mTPI 0.5 (4.6) 2.9 (4.8) 7.2 (5.9) 21.8 (6.8) 44.9 (8.1) 22.5 (5.7) 14.6 0.2
UMPBI 0.3 (5.0) 3.0 (5.6) 9.4 (6.5) 28.5 (7.7) 42.1 (7.3) 16.6 (3.8) 12.8 0.2
Scenario 4 0.06 0.08 0.12 0.18 0.40 0.71
ABC 0.7 (4.2) 5.1 (5.6) 21.9 (8.2) 57.5 (12.4) 13.5 (5.1) 0.3 (0.2) 17.2 1.0
BOIN 0.9 (5.9) 8.8 (7.5) 28.0 (9.1) 49.6 (8.9) 11.9 (4.0) 0.2 (0.5) 15.7 0.5
CCD 3.8 (7.1) 15.1 (8.4) 28.9 (9.0) 43.3 (8.2) 8.3 (2.9) 0.1 (0.3) 14.1 0.4
CRM 0.7 (5.1) 7.5 (6.5) 30.2 (9.6) 51.6 (10.8) 9.9 (3.6) 0.1 (0.3) 15.6 0.1
Keyboard 1.3 (5.9) 8.6 (7.4) 27.1 (9.0) 50.0 (8.9) 12.2 (4.1) 0.3 (0.5) 15.6 0.5
mTPI 1.3 (5.0) 6.6 (6.0) 18.4 (7.9) 56.9 (10.5) 16.2 (5.9) 0.1 (0.6) 17.8 0.5
UMPBI 0.8 (5.8) 8.2 (7.4) 26.1 (8.9) 52.2 (9.2) 12.1 (4.1) 0.2 (0.5) 15.8 0.4
Scenario 5 0.00 0.00 0.03 0.05 0.11 0.22
ABC 0 (3.0) 0 (3.0) 0.1 (3.4) 2.5 (4.6) 37.6 (11.2) 59.8 (10.8) 10.9 0
BOIN 0 (3.0) 0 (3.3) 0.3 (4.2) 5.4 (6.0) 36.5 (9.1) 57.8 (10.4) 10.3 0
CCD 0 (3.0) 0 (3.3) 1.5 (4.7) 8.6 (6.4) 40.1 (9.2) 49.9 (9.4) 9.8 0
CRM 0 (3.0) 0 (3.0) 0 (3.4) 2.9 (4.8) 34.4 (9.1) 62.6 (12.6) 11.4 0
Keyboard 0 (3.0) 0 (3.3) 0.5 (4.3) 5.8 (6.0) 35.0 (8.9) 58.7 (10.5) 10.3 0
mTPI 0 (3.0) 0 (3.0) 0.4 (3.8) 3.6 (4.7) 27.3 (7.7) 68.8 (13.8) 11.9 0
UMPBI 0 (3.0) 0 (3.3) 0.5 (4.3) 5.7 (5.9) 36.3 (9.0) 57.5 (10.5) 10.4 0

Table 3. The percentages of MTD selection (the numbers of patients treated at each dose)
under the ABC and CRM designs with 5000 replications. The target toxicity probability is 0.25
in the real trial application with 37 patients.

Design Dose Level DLT None
1 2 3 (%) (%)

0.12 0.40 0.67
ABC 55.9 (19.3) 43.4 (16.6) 0.2 (0.9) 26.2 0.6
CRM 56.4 (18.8) 42.7 (16.5) 0.1 (1.5) 26.9 0.8
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