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1.  INTRODUCTION

A key goal in the neuroscience field is to understand the 
relationship between functional activity and the static 
anatomical structural wiring in the human brain (Fornito 
et al., 2015; Suárez et al., 2020). Many noninvasive neu-
roimaging techniques are used to measure functional 
activity, including functional magnetic resonance imaging 

(fMRI), electroencephalography (EEG), and magnetoen-

cephalography (MEG) (da Silva, 2013; Tivadar & Murray, 

2019). The most common way in which these data are 

utilized is in the form of a functional connectivity (FC) 

matrix, which specifies the correlation between any two 

brain regions’ measured activity time series (Bassett & 

Bullmore, 2009; Bullmore & Sporns, 2009). Although 
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historically the field has focused on fMRI-derived FC, it is 
now also possible to employ MEG time series to obtain 
FC; for example, Brookes et al. (2011, 2012) where the 
authors find spatial agreement between FC measured 
using MEG and fMRI. Structural wiring is typically 
obtained using diffusion tensor imaging (DTI) (Verma 
et al., 2022), followed by computational tractography to 
produce a matrix of structural connectivity (SC) that gives 
the connection strength between all pairs of gray matter 
regions (Bullmore & Sporns, 2009; Hagmann et al., 2008). 
Hence a powerful way to understand the structure–
function relationship in the brain is by achieving a map-
ping between SC and FC.

Graph theory-based statistical relationships between 
SC and FC are well known phenomenologically (Abdelnour 
et al., 2014, 2018; Achard et al., 2006; Bassett & Bullmore, 
2006, 2009; Buckner et  al., 2005; Bullmore & Sporns, 
2009; Chatterjee & Sinha, 2007; Ghosh et al., 2008, 2023; 
He et al., 2008; Hermundstad et al., 2013; Mišić et al., 
2014, 2016; Park & Friston, 2013; Rubinov & Sporns, 
2010; Rubinov et  al., 2009; Strogatz, 2001; van den 
Heuvel et al., 2009; Xie et al., 2021). Most such SC-FC 
studies pertain to fMRI, but are increasingly being applied 
to M/EEG (Messaritaki et al., 2021; Wodeyar & Srinivasan, 
2022). It has recently emerged that graph harmonics, also 
known as eigenvectors, gradients, or eigenmodes, of the 
SC matrix, especially its Laplacian, are excellent graph 
features for mapping this structure–function relationship. 
Indeed, the concept of graph harmonics, borrowing from 
the emerging field of graph signal processing (GSP) 
(Auffarth, 2007; Kondor & Lafferty, 2002; Larsen et  al., 
2006; Ng et al., 2001), provides an elegant and concrete 
mathematical framework to describe brain function and 
reflect distinct spatial patterns of functional signal 
(Abdelnour et al., 2014; Atasoy et al., 2016; Ghosh et al., 
2023). It is of course not necessary to employ graph har-
monics; it has been shown that eigenmodes of signal 
propagation operators in physical media (i.e., brain tis-
sue), following its geometric boundaries, are also capable 
of producing closed-form solutions and in reproducing 
FC (Robinson et  al., 2016). The geometric eigenmode 
approach (Pang et  al., 2023) is utilized for both task-
evoked and task-free fMRI data, suggesting that brain 
activity can be succinctly explained through the brain’s 
geometry. However, it remains to be investigated whether 
this conclusion also applies to MEG data. Despite these 
findings, graph theoretic methods may be preferable due 
to their simplicity and do not require detailed knowledge 
of an individual brain’s geometric conformations.

The graph harmonics of SC and FC appear to be 
shared, and their eigenvalues reflect their graph frequency 
(Chung, 1997; Deslauriers-Gauthier et  al., 2020), and 
together they form a graph Fourier basis. Eigenvalues of 

FC are related by a function of SC eigenvalues (Becker 
et al., 2018; Deslauriers-Gauthier et al., 2020; Lioi et al., 
2021; Meier et al., 2016; Robinson et al., 2016; Tewarie 
et al., 2020), for example, exponential (Abdelnour et al., 
2021) or power series (Becker et al., 2018; Meier et al., 
2016). The explanatory power of graph harmonics was 
further extended by Xie et al. (2021) who, by introducing 
conductance delays between nodes, proposed a so-
called complex Laplacian whose harmonics possessed 
rich spatial patterns that further improved the structure–
function correspondence. Remarkably, only a few SC 
graph harmonics are usually sufficient to reproduce 
empirical fMRI-derived FC (Abdelnour et al., 2018; Atasoy 
et al., 2016; Preti & Van De Ville, 2019; Xie et al., 2021). 
Hence harmonics may be a natural organizing principle 
for structure–function mapping, whereby low harmonics 
are thought to couple to global or integrative functions, 
while high harmonics are uncoupled to function and sub-
serve segregative functions (Preti & Van De Ville, 2019; 
Rué-Queralt et al., 2023). The SC’s Laplacian harmonics 
may be thus thought of as the essential substrate on 
which functional patterns of the brain are established 
(Abdelnour et al., 2018; Atasoy et al., 2016; Glomb et al., 
2020; Preti & Van De Ville, 2019; Robinson et al., 2016; 
Xie et al., 2021).

Unfortunately the explanatory power of graph har-
monics is limited to a phenomenological level, since they 
do not emerge from basic underlying biophysical pro-
cesses, and are, therefore, unable to infer mechanistic 
insights (Mišić et al., 2015; Raj et al., 2022). Previously we 
and others showed that harmonics naturally arise from 
fMRI signal diffusion or random walk through the SC 
graph (Abdelnour et al., 2014; Deslauriers-Gauthier et al., 
2020; Tewarie et al., 2020), but passive diffusion is too 
simple to describe the rich and oscillatory MEG signal. 
Historically, biophysical relevance necessitated detailed 
connectome-coupled neural mass models (NMM) whose 
parameters reflect actual biophysical processes such as 
excitatory and inhibitory neuronal gains and capaci-
tances (Breakspear, 2017; Cabral et  al., 2014, 2017; 
David & Friston, 2003; Destexhe & Sejnowski, 2009; El 
Boustani & Destexhe, 2009; Honey et al., 2009; Muldoon 
et  al., 2016; Siettos & Starke, 2016; Spiegler & Jirsa, 
2013; Wilson & Cowan, 1973). Such approaches involve 
massive time consuming nonlinear simulations. Thus the 
role of SC in these models is observed only indirectly, 
and does not allow a harmonic decomposition of SC. 
Due to computational and interpretational challenges, 
NMMs are not well suited to reveal the key organizing role 
of graph harmonics in functional activity. Another 
conceptual limitation is that the mapping between SC 
and FC is done separately for each frequency band of 
interest, whether low-frequency delta, dominant alpha, or 



3

H. Jin, F. Abdelnour, P. Verma et al.	 Imaging Neuroscience, Volume 2, 2024

high-frequency beta. Model parameters that best fit one 
band typically do not fit another—this is problematic 
since the S–F coupling is a property of physical neural 
systems and should not be frequency band dependent. 
While it is possible that the coupling may exhibit an 
apparent frequency dependency, that dependency 
should come about from the model directly or from mod-
eling assumptions (e.g., frequency-dependent noise or 
coherence properties).

In this study, we attempt to fill key conceptual and 
practical gaps in the field of brain graph harmonics and 
their relationship with FC obtained from MEG recordings. 
We begin by establishing the relationship between the 
eigenvalues of structural graph harmonics and those of 
FC. Then, we develop the theory necessary to explain 
how graph harmonics emerge from basic biophysical 
processes on SC, leveraging recent advances in model-
ing wide-band MEG power spectra using the spectral 
graph model (SGM) (Raj et al., 2020; Verma et al., 2022). 
Note, although the present harmonic model of FC retains 
the same biophysical principles as the SGM work, it is 
specifically designed to predict narrow-band FC, not 
wide-band power spectra. Despite the simplicity of the 
harmonic decomposition, we show that indeed the pro-
posed theory is imbued with all detailed biophysical pro-
cesses and parameters that have hitherto only been 
available via lengthy nonlinear NMM simulations. We 
show, for the first time, that MEG FC from multiple fre-
quency bands can be simultaneously decomposed into a 
shared, parsimonious set (3–5) of low harmonics of SC. 
Remarkably, the proposed theory admits an analytical, 
closed-form solution of MEG FC—a rare feature in com-
parison with extant NMMs which are only revealed via 
large simulations. We then propose a speedy and flexible 
deep learning algorithm for inferring the biophysical 
parameters that dictate the SC–FC relationship based on 
this harmonic decomposition. This tool allows us to infer 
model parameters almost instantaneously for a given 
subject, after the network has been trained on sufficient 
simulation-based training samples. Parameter inference 
has historically been an intractable challenge in neural 
system modeling, and prior coupled NMMs require a 
combination of hand tuning and grid search (Glomb et al., 
2022; Xie et al., 2019). In contrast, we were not only able 
to obtain best-fit biophysical parameters very quickly 
(within seconds) but also to give their full posterior distri-
butions. The presented approach should also be con-
trasted with another popular FC inference method called 
dynamic causal modeling (DCM) (Kiebel et  al., 2008; 
Pinotsis et al., 2012), which seeks to estimate effective 
connectivity from functional activity, and does not employ 
an explicit structure–function model as we do; see Dis-
cussion section for further details.

We demonstrate this inference ability, critical for 
potential practical applications of model-based SC–FC 
inference, on a study of 36 healthy individual subjects’ 
MEG recordings. We achieved excellent predictive power 
over delta, theta, alpha, and beta frequency bands, which 
favorably compared with several benchmark methods, 
including prior graph harmonic mapping and SC-coupled 
NMM methods. Remarkably, we find that a single bio-
physical parameterization is capable of simultaneously 
fitting FCs from all relevant frequency bands. Thus our 
third key contribution is to show that the same underlying 
biophysical model and the same graph harmonics can 
predict FC in all frequency regimes. By allowing for fre-
quency dependency to emerge from the underlying bio-
physics of neural activity, we resolve one of the key 
conceptual limitations of NMMs—the biologically implau-
sible inability of a single NMM model to fit to all FCs from 
all frequency bands simultaneously.

This theoretical and experimental study attempts to 
combine both the elegance of graph harmonics and the 
biophysical relevance of detailed NMMs. Thus the pro-
posed method may be considered a “computational 
microscope” into which high-dimensional MEG data are 
funneled into produce low-dimensional inferred parame-
ters that parsimoniously capture the SC–FC relationship. 
The latter may be further developed into subject-specific 
biomarkers of mental or disease state. The demonstration 
that parsimonious, biophysical harmonic-based SC–FC 
mapping can be achieved at near-instantaneous speed in 
individual subjects opens new scientific and practical 
avenues for the emerging science of brain harmonics.

2.  THEORY AND MODEL

Our goal of achieving a closed-form solution of functional 
connectivity (FC) and relating it to structural connectivity 
necessitates a deterministic model of how neural activity, 
as measured by MEG recordings, becomes established 
on the brain’s structural connectome. For this purpose, 
we leverage the spectral graph model (SGM), first intro-
duced in Raj et  al. (2020) and Verma et  al. (2022). Our 
modeling effort begins from the SGM due to several 
desirable properties. First, SGM is a linear biophysical 
model with a closed-form solution in the frequency 
domain. Consequently, compared with nonlinear neural 
mass models—where identifiability of model parameter is 
not guaranteed (Hartoyo et al., 2019; Raj et al., 2022; Xie 
et al., 2019), parameter inference with SGM is more trac-
table and faster. Prior analyses (Raj et al., 2020; Verma 
et al., 2022) show that SGM is able to recover the steady 
state wide-band frequency spectra as well as the spatial 
patterns of the alpha frequency band obtained from MEG. 
Finally, SGM is highly parsimonious, with only seven 
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due to a finite speed v, which is calculated for every 
region as the distance between regions divided by the 
speed v. As derived in Raj et al. (2020) and Verma et al. 
(2022), the frequency domain solution of the macroscopic 
signals is given in closed form as

	
X(ω ) = jωI+ 1

τg
Fg(ω )L(ω )

⎛

⎝
⎜

⎞

⎠
⎟

−1

Hlocal(ω )P(ω ),
	

(1)

where Fg(ω )  is the Fourier transform of a gamma-shaped 
neural response function fg t;τg( )  that seeks to model the 
macroscopic transfer function of excitatory projection 
neurons, with characteristic time constant τg. The func-
tion Hlocal ω;τe,τi,gei,gii( ) represents the transfer function 
capturing the overall activity of populations of excitatory 
and inhibitory neurons at the local or mesoscopic level. 
SGM allows for fitting local transfer function to each 
region; however, it was previously shown that this is not 
necessary and that a spatially invariant set of mesoscopic 
parameters is sufficient to recapitulate empirical MEG 
power spectra (Raj et al., 2020). The entire model is driven 
by external or region-specific process p(t), whose Fourier 
transform is denoted P(ω ) above.

Factoring L(ω ) into its eigen components 
L(ω ) =U(ω )ΛΛ(ω )UH (ω ) =

k=1

N∑ λk (ω )uk (ω )uk
H (ω ),  we can 

write Equation (1) as an expansion on the harmonics  
of L:

	
X(ω ) =

k=1

N

∑ uk (ω )uk
H (ω )

jω + τg
−1λk (ω )Fg(ω )

Hlocal(ω )P(ω ).
	

(2)

For reference, a detailed derivation is given in the 
accompanying Supplementary Information section.

2.2.  Deriving a closed-form expression for  
cross-spectral density of SGM

Prior use of SGM has focused on obtaining the neural 
signal equation in the frequency domain and determining 
its power spectrum. Here we propose to explicitly derive 
the structure–function relationship, that is, the second 
order statistics of the signal X  in terms of the eigende-
composition of the structural Laplacian L. There are sev-
eral equivalent ways to achieve this; here we use the 
most intuitive approach, starting with a definition of the 
cross-spectral density (CSD) as the expectation 
ε X(ω )XH (ω )( ). Let us rewrite Equation (2) more suc-
cinctly as X(ω ) =U(ω ) ΓΓ(ω )UH (ω ) Hlocal(ω )P(ω ), where 
the diagonal matrix ΓΓ(ω ) has as its k-th diagonal entry 

γ k (ω ) = 1
jω + τg

−1λk (ω )Fg(ω )
. Note that the model is depen-

dent on a given instantiation of the model parameters θθ; 
for convenience, this dependence is not shown above 

global biophysically interpretable parameters while other 
biophysical models typically require hundreds of spatially 
varying parameters.

We begin this section by first describing the SGM in 
brief; the reader is referred to the original publications for 
detailed derivations. It is emphasized that the prior SGM 
papers do not by themselves provide a recipe or closed-
form solution of FC, which is the focus of the current study 
and will be described in detail in the subsequent section.

Notation. Scalar variables are denoted in normal font, 
while vectors and matrices are denoted in boldface. 
Matrices are typically uppercase while vectors are typi-
cally lowercase. Matrix complex conjugate, transpose, 
and Hermitian are denoted by (⋅)*, (⋅)T , and (⋅)T, respec-
tively. The expectation is denoted by ε(⋅). Frequency is 
denoted by angular frequency ω in radians per second 
and is related to frequency f  in Hertz via ω = 2πf .

2.1.  Spectral graph modeling

Spectral graph model (SGM) is a hierarchical, linear, ana-
lytic model of brain oscillations, represented via eigende-
composition of the Laplacian of the structural connectivity 
matrix (Raj et al., 2020; Verma et al., 2022). In this sense, 
it is an exemplar of an emerging body of work on har-
monic models of brain activity, whereby the latter is 
described as a finite superposition of the brain network’s 
harmonics or eigenvectors (Abdelnour et al., 2014, 2021; 
Atasoy et al., 2016; Becker et al., 2018; Deslauriers-Gauthier 
et al., 2020; Meier et al., 2016; Tewarie, Abeysuriya, et al., 
2019; Tewarie et al., 2022). In contrast to other harmonic-
based models, the SGM provides an explicit wide-band 
frequency response, spanning low-frequency BOLD sig-
nal all the way to high-frequency MEG signal in the gamma 
band (Verma et al., 2022). A typical SGM has two model 
layers, a mesoscopic layer for local neural circuits in the 
cortex and a macroscopic layer for the whole brain, which 
accommodates the long-range fiber projections that con-
nect individual local circuits and neural populations. The 
model, therefore, explicitly lays out how the structural 
connectome governs and mediates neural activity.

A salient feature of SGM is that it provides a closed-
form solution of brain oscillations under the frequency 
domain. Notably, the model can be fully characterized by 

only seven global parameters θθ = τe,τi,gei,gii,τg,v,α( )T. 
These include excitatory and inhibitory time constants τe, 
τi, and neural gains gei and gii at the mesoscopic level; 
and long-range excitatory time constant τg, speed v, 
coupling constant α at the macroscopic level. We define 
the complex Laplacian matrix L ω;α,v( ) = I− αC* ω;v( ), 
where the elements of C* are cij

* ω;v( ) = cijexp − jωτ ij
v( ), 

i, j = 1 . . . N, where cij is the structural connectivity 
between regions i and j and τ ij

v  corresponds to the delay 
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but is always to be assumed implicitly. Using this short-
hand, we expand the CSD of X(ω ) as

	

ε X(ω )XH (ω )( ) = |Hlocal(ω ) |2 U(ω ) ΓΓ(ω ) UH (ω )ε P(ω )PH (ω )( ) 
U ω( ) ΓΓH (ω )UH (ω ).

Now, we introduce the key assumption that the driving 
input signal is uncorrelated across regions and across 
time. This is plausible because we are interested in 
achieving the resting-state stationary description of FC, 
where no external stimulation is provided to the brain. In 
this scenario, the driving signal is internal to the brain, 
and while those internal processes may have spatial het-
erogeneity at specific instances, over time those reflect 
simply as spatially and temporally uncorrelated noise 
processes. With this assumption or approximation, we 
have ε P(ω )PH (ω )( ) = σ2I for an i.i.d. noise process with 
variance σ2. Since the harmonics or eigenvectors  
are orthonormal, we have UH (ω )U(ω ) = I, and the right-
hand side of the above equation greatly simplifies to 
σ2   Hlocal(ω )

2
 U(ω ) ΓΓ(ω ) 2  UH (ω ).

Additionally, the estimated FC is subsequently  
normalized via its diagonal terms, which eliminates  
the variance σ2 and local frequency response function 
Hlocal (ω ), which no longer needs to be inferred.

Thus, finally, we have a closed-form solution of the 
CSD F! (ω ) at any frequency, as a superposition over graph 
harmonics:

	

F! ω,θθreduced( ) =
k=1

N

∑ uk (ω )uk
H (ω )

jω + τg
−1λk (ω )Fg(ω )

2 .

	

(3)

Note, the theoretical FC is now dependent on a 
reduced set of model parameters, since due to the 
elimination of Hlocal (ω ) term, the estimated FC from 
SGM only depends on the three-parameter reduced 
vector θθreduced = τg,v,α( ).

Thus, the theoretical FC of the SGM is given by a 
superposition of graph Laplacian eigenmodes or har-
monics uk (ω ), each of which manifests a frequency 
response γ k (ω ) dependent on the eigenvalue λk (ω ). The 
eigenvectors of the predicted FC are identical to those of 
the structural Laplacian. In this manner, we have reduced 
the full cross-spectral density of brain activity to model-
ing just the diagonal eigenvalues of the structural con-
nectome; all region-pair coherences are thus expected 
to be captured entirely by the eigenvectors U(ω ). This 
description is entirely consistent with prior studies using 
graph harmonics (Abdelnour et al., 2014, 2021; Atasoy 
et  al., 2016; Becker et  al., 2018; Deslauriers-Gauthier 
et  al., 2020; Meier et  al., 2016; Tewarie, Abeysuriya, 
et al., 2019; Tewarie et al., 2022), but in contrast to those 

studies, here we provide for the first time a fully 
frequency-resolved description of FC, at arbitrary fre-
quency. Remarkably, this description is direct, and does 
not require either simulations in time, or indirect calcula-
tion of FC via the narrow-band Hilbert envelope (Cabral 
et al., 2014; Tewarie et al., 2022).

3.  METHODS

3.1.  Dataset

In this work, we analyze magnetoencephalography (MEG) 
data. The dataset is based on preprocessed and publicly 
available dataset for the SGM work (Xie et al., 2019), and 
is identical to the one used for the modified SGM (Verma 
et al., 2022). The MEG datasets and the corresponding 
SC and distance matrices were all processed at the 
regional level under the Desikan–Killiany atlas parcella-
tion with 68 cortical regions (Desikan et al., 2006). For this 
dataset, MEG, anatomical MRI, and diffusion MRI were 
collected for 36 healthy adult subjects (23 males, 13 
females; 26 left handed, 10 right handed; mean age 
21.75 years, with age range 7 – 51 years). Data collection 
procedure has been described previously (Raj et  al., 
2020). All study procedures were approved by the institu-
tional review board at the University of California at San 
Francisco and were in accordance with the ethics stan-
dards of the Helsinki Declaration of 1975 as revised in 
2008. MEG recordings were collected for 5 minutes while 
the subjects were resting and had eyes closed. Out of the 
5-minute recording, a 1-minute snippet was chosen which 
was deemed most noise free. MRI followed by tractogra-
phy was used to generate the connectivity and distance 
matrices. The entry in the distance matrix is the fiber length 
distance, which is defined as the average number of vox-
els spanned across all streamlines between those regions. 
The publicly available dataset consisted of processed 
connectivity and distance matrices for every subject.

For details on the data processing, refer to Section S.1 
of the Supplementary Materials as well as the literature 
(Jin et al., 2023; Raj et al., 2020; Verma et al., 2022).

3.2.  Constructing functional connectivity (FC) in 
discrete frequency bands

This study requires the fitting of an FC matrix derived 
from the theoretical cross-spectral density (Eq.  3) to 
empirical MEG-derived FC, specifically its inter-regional 
coherence. We, therefore, evaluated FC at four com-
monly studied MEG frequency bands: delta (2 – 3.5 Hz), 
theta (4 – 7 Hz), alpha (8 –13 Hz), and beta (13 – 20 Hz).

Since the SGM was tailored to frequencies up to 
≈ 25 Hz, we only investigate the results on the lower part 
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of the beta band (i.e., 13 – 20 Hz). The SGM is designed 
for frequencies up to around 25  Hz because our SGM 
can accurately reconstruct the PSD below 25 Hz, that is, 
the beta band. Higher frequencies, in the gamma band, 
arise mainly from local neural populations that do not 
appear to be modulated by the structural connectivity, 
hence a connectome-based model such as SGM would 
not be expected to fit spectra in this regime, as noted in 
prior reports (Jin et al., 2023; Raj et al., 2020; Verma et al., 
2022).

In order to convert the theoretical CSD to band-specific 
FC, we first summed the CSD across all frequencies within 
a given band, then normalized its rows and columns by the 
diagonal. For example, for the alpha-band we define

F! alpha θθreduced( ) = Δ−1/2
ω∈Ωalpha
∫ F! ω,θθreduced( )dω Δ

− 1
2 , (4)

�

(4)

where Δ contains the diagonal entries of the band sum 
∫F! (ω )dω and Ωalpha contains the range of frequencies 
within the alpha band. Analogously, we define F!delta, F! theta 
and F!beta; generically, we will refer to a given band’s FC 
as F!band.

Empirical FC matrices using MEG data were con-
structed analogously to the theoretical ones, using 
coherence-based analysis implemented in the MNE-
Connectivity 0.4.0 Python toolbox (Gramfort et al., 2013). 
Denoting the Fourier transform of two time series for  
ith and jth ROIs as Yi (ω ) and Yj (ω ), the i, j-th entry of 
coherence-based FC for a given frequency band, say 
alpha, is given by

	

Falpha⎡⎣ ⎤⎦ i, j =
ω∈Ωalpha
∫ Yi

* (ω )Yj (ω )dω

ω∈Ωalpha
∫ Yi (ω )dω

ω∈Ωalpha
∫ Yj (ω )dω

. (5)

	

(5)

It may be verified that both the theoretical and empiri-
cal FCs are analogous to coherence, and normalized in 
the same manner. In this work, we set the diagonal ele-
ments of both theoretical and empirical FC to zero follow-
ing the convention. Our implementation replaces the 
integration above by summation over 10 equally spaced 
frequency points per band. We used the spectral_connec-
tivity_epochs function from the MNE-Connectivity Python 
package (Gramfort et  al., 2013), set to 100 epochs, to 
obtain the FCs from the MEG recordings for each fre-
quency band. Specifically, this function firstly filters the 
MEG time series into the desired frequency band, then 
computes the coherence matrix for each epoch, and 
finally averages the matrices across epochs to obtain the 
FC matrix. Epochs are equal-duration time segments of 

the EEG/MEG signal during each of which the signal may 
be considered relatively stationary (Gramfort et al., 2013). 
Thus, the use of a single epoch reflects that the FC net-
works were obtained from the entire temporal signal, 
while > 1  epochs involve segmenting the time series and 
combining each segment’s FC together in a principled 
manner. The mode was set to multitaper, an option that 
has favorable time–frequency product and a optimal 
trade-off between bias and variance of spectral estimates. 
No frequency windowing was applied (mt_windowing).

3.3.  Simulation-based inference for FC

Despite the parsimony and explicit solution of the SGM, 
its inference from empirical FC is quite challenging using 
sampling or gradient descent methods. Simulation-
based inference (SBI) (Tejero-Cantero et  al., 2020) is a 
recent advanced neural network-based tool that makes 
Bayesian inference possible for models with complex 
and stochastic simulators. This technique is especially 
attractive in situations where the likelihood function is 
intractable or difficult to compute, where other methods 
based on explicit formulation of the likelihood function 
become challenging. It shows some success in identify-
ing mechanistic models of neural dynamics (Gonçalves 
et al., 2020) and especially presents promising results for 
predicting power spectral density with SGM for MEG 
data (Jin et al., 2023).

Here we adapt and apply the SBI tool to fit the SGM to 
empirical FC from selected frequency bands of MEG 
recordings (referred to as SGM-SBI). SBI requires the for-
ward computation of a large number of simulations, in 
order to assemble a set of paired samples for training. 
Therefore, we first compute, for any parameter choice 
θθreduced drawn from a suitably defined prior distribution, 
the pair θθreduced,F!band θθreduced( )( ) for each frequency 
band, band ∈ delta, theta, alpha, beta{ }, using the SGM 
Equations (3) and (4). Subsequently, noise from a stan-
dard Gaussian distribution is added to each entry of the 
computed mean FC matrix to account for the inherent 
noise in the empirical FC (Jin et al., 2023).

3.3.1.  Parameter transformation

Any biophysical model with physically realizable parame-
ters typically admits well-defined parameter ranges 
beyond which the parameters and the overall model 
become implausible. The SGM too is a biophysical model 
whose parameters have well-defined biological meaning, 
and whose ranges can be specified a priori—see Table 1. 
These ranges are taken from previous SGM works (Jin 
et  al., 2023; Raj et  al., 2020; Verma et  al., 2022). The 
bounded parameter constraints cause difficulties for 
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posterior sampling with SBI (Deistler et  al., 2022), we 
reparameterize SGM parameters to ease the posterior 
sampling. Specifically, SGM parameters are transformed 
with a standard logit function s = H θθreduced( ) so that the 
original lower and upper bounds map to −∞ and +∞, 
respectively (Jin et al., 2023).

3.3.2.  Prior specification

To obtain the satisfactory inference performance with 
SBI, a large training sample size is typically required. To 
ease the computational burden, we construct informa-
tive priors derived from the dual annealing fitting results 
to improve the quality of the simulated samples in the 
current study. With better quality samples, the simu-
lated sample size can be significantly reduced and the 
neural network can learn the posterior distribution more 
effectively. To be specific, we firstly fit the theoretical 
and empirical FCs with the dual annealing algorithm 
with 200 iterations yielding the rough point estimate of 
SGM parameters, S!ANN. We adopt a Gaussian prior 
π(s) ∼ N s!ANN, I( ) for the transformed parameters, where 
I represents the identity matrix.

3.3.3.  Training procedure

We adopt a three-round training process. Initially, 1000 
pairs of s,F!band H−1(s)( )( ) are generated using SGM and 
prior π(s). These pairs are then used to train a neural net-
work, parametrized by ΦΦ, whose task is to approximate 
the true posterior of s via a neural spline flow qΦΦ (Durkan 
et  al., 2019). Neural network architecture including 50 
hidden features uses the two-block residual net for con-
text embedding, which is the default setting in the SBI 
package (Tejero-Cantero et al., 2020). All other hyperpa-
rameters also adopt the default settings. We feed the 
empirical FC Fband to qΦΦ, yielding the posterior distribu-
tion qΦΦ s |Fband( ) with estimated parameter ΦΦ! for the first 
round. In the subsequent training round, we update 
parameters ΦΦ!  in a similar manner. The only variation is 
that we use the previous round’s posterior distribution 
as the current round’s prior distribution for generating 
simulation pairs. After three-round training, the final 

estimation of the posterior qΦΦ s |Fband( ) is obtained. The 
target posterior distribution of θθreduced is qΦΦ! × | det(J) |, 
where J is the Jacobian matrix of the transformation 
function H (Henderson & Searle, 1979). The process of 
obtaining the posterior distribution of s is delineated in 
Algorithm 1. A more comprehensive illustration of the com-
bination of SBI with SGM can be found in Jin et al. (2023).

We also consider training jointly with all four bands, 
where the corresponding FCs are simply stacked into a 

larger matrix Fshared = Fdelta 
T Ftheta

T  Falpha
T  Fbeta

T( )T, and anal-
ogously we define the larger theoretical FC matrix 
Fshared θθreduced( ). Then the above algorithm is applied to 
these larger “all-bands” FCs, following which we infer the 
posterior of a single set of parameters θθshared  that can 
simultaneously fit to all bands (referred to as SGM-SBI-
shared).

3.4.  Metrics of performance

To better evaluate the performance of our SGM-SBI pipe-
line in FC, we introduce three main metrics to assess the 
similarity between estimated and empirical FCs, includ-
ing the Pearson’s correlation, Lin’s correlation (Lin, 1989), 
and mean squared error (MSE). Lin’s correlation (or con-
cordance correlation coefficient) is a reproducibility index 
which has been used in the neuroimaging area (Lange 
et al., 1999) for a long time. While Pearson’s correlation 
only cares about the dependence between two variables, 
it further considers the deviation of the means and vari-
ances of the two variables. Thus, it can be regarded as a 
stricter version of Pearson’s correlation. The value of 
Lin’s correlation is within −1, 1[ ], where a larger value indi-
cates higher consistency.

Table 1.  Global SGM parameters and bounds for parameter 
estimation for SBI-SGM.
�

Name Symbol
Lower/upper  

bound

Graph time constant τg [0.005 s, 0.03 s]
Transmission speed v [5.0 m/s, 20.0 m/s]
Long-range connectivity 
coupling constant

α [0.1, 1]

Algorithm 1. Posterior estimation from FC with SBI

Require: An initial multivariate Gaussian prior  
π(s) ∼ N ŝANN, I( ), a specific frequency band 
band ∈ delta, theta, alpha, beta{ }, SGM F!band H−1(s)( ), 
an observation Fband , the number of samples

  per round M = 1000.
  for r = 1,2,3 do
    for m = 1, ... ,M do
      Sample sm ∼ π(s)
      Compute SGM forward model F!band

(m)
H−1(sm )( )

    end for
    ΦΦ! ← argmin

ΦΦ
− 1
M

∑m=1
M log qΦΦ sm |F!band

(m)( ){ }
    π(s)← qΦΦ! s |Fband( )
  end for
 � return qΦΦ! s |Fband( ) as the estimate of the posterior 

distribution of s. The posterior distribution of θθreduced  
is qΦΦ! × det(J) , where J is the Jacobian matrix of the 
transformation H .
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While the interpretation of the values of Pearson’s cor-
relation is straightforward, the values of Lin’s correlation 
and MSE lack intuitive understanding. Therefore, instead 
of the raw Lin’s correlation and MSE, we report the corre-
sponding standardized versions. To be specific, we ran-
domly shuffle the empirical FC for 1000 times and calculate 
the metrics between the shuffled versions and original 
one. Lin’s correlation and MSE are then standardized using 
the mean and variance derived from the shuffled metrics.

3.5.  Comparison with benchmark methods

In order to compare the present SGM-SBI method for 
mapping FC from SC, we implemented several current 
and relevant benchmark methods. All benchmarks, 
described below, were applied to the same datasets as 
the proposed method, and were evaluated using the same 
performance metrics. The benchmark methods were:

	 1	� Direct mapping. We used the subject’s SC itself as 
a direct prediction of their FC, measuring its per-
formance using measures of correlation, Lin con-
cordance, and MSE applied element-wise between 
the two matrices SC and FC.

	 2	� Eigen-mapping. Recent work (Abdelnour et  al., 
2014, 2021) shows that FC is predictable from 
the eigendecomposition of SC via a simple graph 
diffusion model. In the harmonics space, this 
amounts to a simple relationship between the 
eigenvalues in FC and SC Laplacian, for example, 
the exponential decay function. Hence we employed 
the two-parameter exponential relationship sug-
gested by Abdelnour et al. (2021), that is,

λeig = exp ( − λsc * p1) + p2,

where p1,p2( ) are the parameters that need fitting 
and λeig and λsc are the eigenvalues of estimated 
FC from the eigen-mapping and SC, respectively.

	 3	� Coupled NMM. We adopt the Wilson–Cowan (WC) 
model (Wilson & Cowan, 1972) as our NMM. To 
model the coupling between different brain regions, 
the WC model includes the input from other ROIs 
during its evolution. Specifically, denoting E i,t( ) 
and I i,t( ) as the number of excitatory and inhibitory 
cells firing at ROI i and time t, the model is

τe
E i,t( )
dt

= −E i,t( )+ 1− E i,t( ){ }Se ceeE i,t( )− cieI i,t( )+O i,t( )+ P i,t( ){ }+ εe i( ),

τ i
I i,t( )
dt

= −I i,t( )+ 1− I i,t( ){ }Si ceiE i,t( )− cii I i,t( )+Q i,t( ){ }+ εi i( ),

where O i,t( ) is the input from other ROIs, τe and τ i  are 
the time constants, Se and Si  are functions of sigmoid 
form, cee,cie,cei,cii( ) are local coupling parameters, P i,t( ) 
and Q i,t( ) are the external input to the excitatory/inhibi-
tory populations, and εe i( ) and εi i( )  are the noise. We 
implement the NMM with neurolib package in python 
(Cakan et al., 2021). NMM is fitted with the evolutionary 
algorithm over four parameters, global coupling strength, 
the baseline external input parameters (used to generate 
P i,t( ) and Q i,t( )), and the global noise intensity. The sim-
ulation duration is set to 61, 000 ms. For more detailed 
information on the implementation of the WC model, refer 
to Cakan et al. (2021).

It is worth noting that the number of parameters in 
SGM-SBI, NMM, and eigen-mapping method are 3, 4, 
and 2, respectively, which are overall comparable. All 
benchmark methods above were fitted to and evaluated 
with Lin’s correlation loss. For the fitting process, we con-
vert the FC matrix into a vector and apply the minmax 
operator on this vector for both SBI-SGM and NMM. 
However, in the case of the eigen-mapping method, we 
refrain from using the minmax operator as it prevents 
convergence. All performance metrics are computed with 
the vectorized FC following minmax operator. For all the 
methods, the SCs are preprocessed in identical ways, 
including removing the extreme connections via capping 
large values and adding minor values to enhance the 
connection between the corresponding regions between 
left and right hemispheres. These preprocessing steps 
are consistent with the previous work (Raj et al., 2020; 
Verma et al., 2022) and are robust to different datasets 
and choice of atlas.

4.  RESULTS

4.1.  SGM produces rich FC patterns depending on 
parameters and frequency bands

We first need to establish that the proposed SGM is 
capable of producing a rich diversity of FCs that can 
change depending on frequency band and model param-
eters. We varied a single SGM parameter, in turn, in the 
range given in Table 1 while fixing the other two at the 
optimal values fitted on empirical data. The predicted 
FCs are shown in Figure  1. All three SGM parameters 
influence the resulting FCs. However, their effects can 
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vary significantly across different frequency bands. In 
delta and theta bands, each parameter noticeably affects 
overall connectivity strength as well as inter- and intra-
hemispheric connectivity. Model FCs generally exhibit 
denser and stronger connections within hemisphere 
and weaker connections between hemispheres. In alpha 
band, τG and α exert substantial influence within each 
hemisphere, while speed v predominantly affects inter-
hemispheric connectivity. In beta band, τG and α  show 
minor effect on the FCs while increasing v reduces over-
all connectivity. Overall, the highest predicted FC is seen 
in lower frequencies, while beta band gives the lowest 
FC. Most importantly, the same model, with fixed param-
eters, is capable of producing diverse FC patterns in dif-
ferent frequency bands. The requirement that the same 
biophysical process be capable of producing frequency-
specific FC was one of the key motivations of this study.

4.2.  SC harmonics encompass spatial gradients  
of MEG FC

Since the proposed SGM is fundamentally based on the 
utility of SC harmonics to capture functional activity pat-
terns, we first show in Figure 2A the real components of 
the first three harmonics u1 to u3 on the brain surface. 
These harmonics, averaged across 36 subjects, are nor-
malized within a range of −1, 1[ ]. The first harmonic rep-
resents a global spatial pattern, previously suggested to 
represent the global signal in fMRI (Abdelnour et  al., 

2021). The second harmonic manifests a strong left–right 
spatial gradient and appears to capture the prominent 
interhemispheric functional connectivity structure. It also 
has a prominent internal structure with high levels in tem-
poral and orbitofrontal areas and lower levels in medial 
and motor areas. Given that the brain plots exhibit simi-
larity across various frequency bands, we have chosen to 
present plots from only one band. The third harmonic is 
laterally symmetric and captures a strong anterior–
posterior gradient such that visual areas are at one pole 
and dorsolateral and orbitofrontal areas at the opposite 
pole. This finding is consistent with previous studies 
(Atasoy et al., 2016; Xie et al., 2021).

4.3.  Top few SC harmonics capture most of the 
energy of MEG FC

We evaluated the projections of the MEG-derived FC 

matrix Fband on the complex Laplacian harmonics U, that 

is, diag UHFbandU( ). The moduli of diagonal elements of 
this matrix contain the amount of MEG FC that is cap-
tured within each harmonic. Let us refer to this quantity 
as a harmonic’s “participation energy.” The relationship 
between the SC harmonics’ participation energy in MEG 
FC and the moduli of their associated eigenvalues is 
shown in Figure 2B, separately for each frequency band 
delta, theta, alpha, and beta. Each curve corresponds to 
a single subject. In producing these plots, the Laplacian 
matrix was evaluated at each band’s mean frequency, for 

Fig. 1.  The SGM-modeled FCs in delta, theta, alpha, and beta bands when varying τG (left), v (middle), and α (right) 
and fixing the other two parameters, separately. Note that each column of FCs shares the same SGM parameters. The 
fixed parameters are set to the fitted value from SGM-SBI-shared, while the varying parameters fluctuate within the range 
specified in Table 1. The values of three parameters are shown in the figure.
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example, frequencies 2.75, 5.5, 10.0, 16.5[ ] Hz. Across all 
bands, the MEG FC appears to be well captured by only 
the first few harmonics, roughly u1 to u3. It is closely related 
to the observation in Tokariev et  al. (2019), where the 
authors showed that low order brain surface eigenmodes 
carry most of the energy. Interestingly, the eigenvalue rela-
tionship appears to follow roughly the exponential decay 
function proposed by our group on fMRI data based on 
graph diffusion arguments (Abdelnour et  al., 2014). This 
exponential relationship is well established now for fMRI 

Fig. 2.  (A) The real part of first 3 complex Laplacian eigenvectors at the alpha band averaged on 36 subjects plotted 
on the brain. (B) The participation energy of empirical FCs after projecting them on the complex Laplacian eigenvectors 
versus the moduli of Laplacian eigenvalues from delta, theta, alpha, and beta  bands. The black dashed lines represent 
the exponential decay function fitted to the participation energy of empirical FCs. (C) The participation energy of SGM-
estimated FCs after projecting them on the complex Laplacian eigenvectors versus the moduli of Laplacian eigenvalues 
from delta, theta, alpha, and beta bands (same order as penal B). The black dashed lines represent the exponential decay 
function fitted to the participation energy of empirical FCs. The number above each plot is the average Pearson’s correlation 
between participation energies from MEG and SGM across 36  subjects. Since SGM is capable of giving wide-band 
spectra, each harmonic can have a different participation energy at different frequencies. Hence we show each frequency 
band’s participation energy in separate plots. The participation energy is defined as the moduli of diagonal elements of the 
projections of the FCs on the complex Laplacian harmonics, that is, diag UHFU( ). Each curve represents a single subject. 
The empirical and theoretical participation energy curves show striking similarities with exceptionally high Pearson’s 
correlations (above 0.9 for all four bands).

FC but has not previously been demonstrated for MEG 
data. Nonetheless, there are many deviations from a strict 
exponential curve, especially in the second and third har-
monics’ participation energy.

4.4.  SGM recapitulates the eigenvalue relationship 
between SC and MEG FC

Next we assessed whether the theoretical SGM mani-
fests a similar harmonic decomposition. To do this, we 
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obtained the participation energies of all harmonics for 
the model-predicted FC F̂band given by diag UHF̂bandU( ). 
We chose the mean posterior SGM parameters from the 
band-specific SGM-SBI to produce the predicted FC in 
each band; detailed results of model fitting are contained 
in later sections. The resulting plots across all bands is 
shown in Figure  2C where the Pearson’s correlation 
between participation energies from MEG and SGM is 
shown above each plot. The empirical and theoretical 
participation energy curves show striking similarities with 
exceptionally high Pearson’s correlations (above 0.9 for 
all four bands), and a very similar relationship with har-
monic eigenvalues, with a roughly exponential function 
with some deviations. Across all four bands, it is evident 
that the participation energy curves obtained from SGM-
SBI model-predicted FC closely approximate those 
derived from empirical FCs—a clear validation of the 
graph harmonic model’s ability to accurately approxi-
mate empirical FCs. Interestingly, the model FC’s partici-
pation energy curve suggests that it requires a few more 
harmonics, up to four or five, to capture overall FC energy. 
Nonetheless, a small fraction of harmonics are sufficient 
to capture most of the participation energy of model-
predicted FC. Both empirical and model FC appear to be 
dominated by the first three graph harmonics. It is 
remarkable that a combination of these three canonical 
structural harmonics are capable of capturing most of the 
participation energy of both empirical MEG and model-
predicted FC.

4.5.  Empirical and fitted model’s FC matrices

The mean FC matrices across all subjects, obtained via 
MNE-Connectivity toolbox from MEG time series using 
the absolute coherence method (see Section 3.2) for all 
four bands, are illustrated in Figure 3 (middle column) as 
matrix heatmaps. Each matrix has rows and columns 
corresponding to brain regions, and elements of the 
matrix represent the functional connectivity between the 
two corresponding regions. Empirical FC in all bands 
appears largely consistent, each displaying strong intra-
hemispheric but commensurately weaker interhemi-
spheric coherence. There is evidence of modular structure 
within each hemisphere as well. Note that the diagonal 
was removed for visualization, since self-connectivity is 
trivially and always equal to 1 in FC by definition. The 
frequency bands are defined as delta, [2, 3.5] Hz, theta, 
[4, 7] Hz, alpha, [8, 12] Hz, and beta, [13, 20] Hz.

For each band and each subject, we fitted the theoret-
ical SGM to the empirical model to obtain the optimal 
band-specific SGM parameters τg,v,α{ }. These parame-
ters were then used to calculate the estimated FCs via 
Equation 3. The left column shows the mean estimated 

FC obtained from all subjects. Similar to the empirical 
FCs results, the estimated FCs with band-specific param-
eters exhibit a consistent pattern across different bands, 
that is, higher connectivity within hemispheres and lower 
connectivity between hemispheres. However, when 
compared with empirical FCs, the estimated FCs have 
stronger connectivity within hemispheres while weaker 
connectivity between hemispheres. Moreover, as the 
frequency of the band increases, there is a significant 
decrease in the overall density of the estimated FC. This 
could be partially attributed to the SGM’s design, wherein 
no attempt was made to capture higher frequencies in 
the high beta and gamma bands, which are thought to 
arise from local oscillatory processes that are not directly 
modulated by the whole brain connectome (Jin et  al., 
2023; Raj et al., 2020; Verma et al., 2022).

We also explored a variant of SGM-SBI, where we fit-
ted the theoretical FCs from all four bands with a single 
set of band-shared SGM parameters for each subject. 
The resulting FCs, referred to as SGM-SBI-shared, are 
depicted in the rightmost column. The estimated FCs 
from band-shared parameters closely resemble those 
from band-specific ones across all four bands. This 
implies that a single set of SGM parameters can suc-
cessfully duplicate the MEG FCs across all four fre-
quency bands, suggesting, uniquely in the literature on 
model-based fitting of MEG, that FC in all bands may be 
governed by the same biophysical process with the 
same characteristic parameters. The average Pearson’s 
correlation between estimated and empirical FCs is 
displayed in Figure  3. FCs from band-specific and  
band-shared parameters have comparable Pearson’s 
correlation with the empirical ones in delta, theta, and 
alpha bands. However, in beta band, SGM-SBI performs 
notably better than SGM-SBI-shared.

4.6.  Posterior distributions of fitted parameters

Now we showcase a key feature of the proposed SGM-
SBI framework: its ability to produce the posterior distri-
butions of SGM parameters. After the SBI-based fitting 
procedure on individual subjects, we draw 1000 samples 
for each parameter and frequency band from every sub-
ject, pooling together the samples from all 36 subjects. 
These posterior distributions are illustrated in Figure  4, 
where each subplot shows the univariate densities for 
each SGM parameter and all MEG bands. For enhanced 
visualization, each density curve is normalized to have 
the same peak value. Both versions of the model, SGM-
SBI and SGM-SBI-shared, were fitted separately and are 
shown in the figure.

In the left column of Figure 4, the density plots of four 
band-specific and one band-shared results for the graph 
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time constant τg are displayed. Across all cases, the pos-
terior distributions of τg exhibit a similar pattern with a 
single peak around 0.005 ms. However, it is important to 
note that densities of τg from both delta and beta bands 
show greater dispersion compared with others. The 
results of axonal conductance speed v are shown in the 
middle column of Figure 4. The densities from theta and 
alpha bands and the band-shared results are all single 
peaked and concentrated around 20 m/s. In contrast, for 
the delta and beta bands, the distributions display two 
distinct peaks situated around 5 and 20 m/s. The results 
for the global coupling constant α are presented in the 
right column of Figure 4. When compared with densities 
for the time constant τg, those for α  exhibit a single peak 
situated approximately at 0.9 a.u., albeit with greater dis-
persion overall. The densities derived from delta and beta 
bands demonstrate higher concentration than others. 
The band-shared results appear to represent a consensus 
of the parameter posteriors across all bands—while this 
is to be expected, it points to a possible disambiguating 

Fig. 3.  Left column: Mean estimated FCs for delta, theta, alpha, and beta bands derived from band-specific SGM 
parmaeters (SGM-SBI); middle column: Mean empirical FCs for delta, theta, alpha, and beta bands across all subjects; right 
column: Mean estimated FC for delta, theta, alpha, and beta bands using band-shared SGM parameters (SGM-SBI-shared). 
The numbers above the arrows represent the average Pearson’s correlation between estimated and empirical FCs.

effect of the shared model compared with the fitting on 
individual bands. We observe that the densities derived 
from band-shared results are closer to those from the 
alpha band across all three SGM parameters, which indi-
cates the importance of alpha band in the study of FC for 
MEG data.

In Figure 4, some of the density plots show double 
peaks. It is worth noting that the density plots are based 
on data pooled from all 36 individuals. The double peaks 
in the density plots may be due to heterogeneity among 
the subjects. To verify this, we plot the individual density 
plots for each subject and do not find any double peaks 
in the density plots. We select two representative sub-
jects and show the individual density plots in Figures 
S.1 and S.2. Another issue is that some of the density 
plots peak at the bounds of the parameters. It raises the 
question, whether the bounds of the parameters in 
Table 1 are too tight. To investigate this, we computed 
the average MSE across all subjects between the empir-
ical FC and model-predicted FC using the SGM-SBI 
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method for different values of the parameters, well out-
side their prescribed bounds; these are shown in Figure 
S.4. We vary the one parameter and fix the other two 
parameters at their fitted values. In the plot, the red 
dashed lines indicate the prescribed upper and lower 
bounds used during SBI inference. The MSE plots show 
that the optimal values for each parameter are roughly 
within the prescribed lower and upper bounds. Although 
the bounds are governed by biological constraints, the 
fact that the model fits are generally contained within 
these bounds is reassuring.

4.7.  Performance of SGM graph harmonic  
model fitting

We evaluate the performance of SGM-SBI model fitting 
in comparison with other methods such as connectome-
coupled NMM, eigen-mapping, and direct mapping (i.e., 
similarity between SC and FC). These alternative models 
were chosen to represent a broad cross-section of 
recent efforts spanning a wide range of complexity and 
computational burden. Coupled NMMs are the most 
complex and expensive, requiring very large simulations, 
but are considered the most biologically accurate. A 
direct correlation between SC and FC is clearly the fast-
est to evaluate and the least complex—while it does not 
represent any model, it serves as a good baseline expec-
tation of model-based approaches. In between the two 
extremes, we also evaluated the eigen-mapping model, 

which captures the essential elements of diffusive spread 
of activity on structural graphs (Abdelnour et al., 2014, 
2021; Deslauriers-Gauthier et  al., 2020), has a simple 
closed-form solution via graph harmonics, but does not 
give wide-band frequency response. There are several 
versions of the eigen-mapping method, each with vary-
ing number of parameters. Here we chose one of the 
simplest, but the performance of alternative eigen mod-
els was quite similar.

Detailed descriptions of these methods are available 
in Section 3.5 and performance metrics are outlined in 
Section  3.4, which include MSE, Pearson’s correlation, 
and Lin’s correlation. We derive FC from each model, 
transform the vectorized FC matrix using the minmax 
operator, and then compute the metrics. These metrics 
evaluate in different ways the models’ ability to replicate 
empirical FCs.

Figure  5 presents the violin plots of MSE (top row), 
Lin’s correlation (middle row), and Pearson’s correlation 
(bottom row) under SGM-SBI, SGM-SBI-shared, NMM, 
eigen-mapping, and direct mapping. For easier interpre-
tation, we standardize the MSE and Lin’s correlation via 
subtracting the mean and dividing by the standard devi-
ation of the corresponding metrics from spinning the cor-
responding ROIs of the empirical FCs on the brain 
surface. By doing so, we create a null model which pre-
serves the spatial structure of the FCs but randomizes 
the values (Alexander-Bloch et  al., 2018). We maintain 
Pearson’s correlation at the original scale as it has good 

Fig. 4.  The posterior density plots of the SGM parameters estimated by fitting empirical FCs with SGM-SBI for delta,  
theta, alpha, and beta bands and with SGM-SBI-shared method via stacking FCs from four bands together. The SGM 
parameters include graph time constant τg (left), transmission speed v (middle), and coupling constant α (right). Note that 
these density plots are based on data pooled from all 36 individuals. For better visualization, all the density curves are 
normalized such that they have the same peak value.
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Fig. 5.  Violin plots of standardized MSE (top), standardized Lin’s correlation (middle), and Pearson’s correlation 
(bottom) between the empirical FC and model-predicted FC using five competing models: SGM-SBI, SGM-SBI-shared, 
NMM, eigen-mapping, and direct mapping for delta, theta, alpha, and beta bands. We aim to assess the performance 
of different methods on reproducing the empirical MEG FC matrices and use three metrics, MSE (the lower the better), 
Lin’s correlation (the higher the better), and Pearson’s correlation (the higher the better). Direct mapping refers to the 
simple correlation or MSE between SC and FC. We show the significant Student’s t-test results comparing SGM-SBI 
with other methods. “*” indicates the test result with a p-value within 0.001, 0.05[ ] and “**” indicates the test result with 
a p-value < 0.001.



15

H. Jin, F. Abdelnour, P. Verma et al.	 Imaging Neuroscience, Volume 2, 2024

interpretation. The violin plots of raw MSE, Lin’s correla-
tion, and the standardized Pearson’s correlation are 
shown in Figure S.3 of the Supplementary Material. We 
conduct Student’s t-test comparing SGM-SBI with other 
methods on these three metrics and present the signifi-
cant results in Figure 5, “*” indicates the test result with a 
p-value within 0.001, 0.05[ ] and “**” indicates the test 
result with a p-value < 0.001. For all three metrics, SGM-
SBI is generally on par with SGM-SBI-shared in delta, 
theta, and alpha bands which is in agreement with the 
observation in Section 4.5. In terms of the MSE metric, 
the SGM-SBI-shared shows some superiority while 
band-specific fitting performs better in correlation met-
rics. The distinction between band-specific and band-
shared fitting becomes more noticeable in the beta band 
where SGM-SBI consistently surpasses SGM-SBI-
shared across all metrics. Interestingly, the performance 
of SGM methods decreases as the band frequency 
increases. This decline is particularly noticeable in the 
beta band, indicating an inability of SGM to handle high-
frequency bands. Taking Figures 3, 4, and 5 together, we 
note again that the band-shared model gives roughly 
similar FC matrix, performance, and parameter posteri-
ors as the band-specific models.

When compared with other methods, our method out-
performs all others based on MSE metric across all four 
bands. Regarding Lin’s correlation and Pearson’s correla-
tion measures, our methods surpass others in both delta 
and theta bands. In alpha band, SGM methods, eigen-
mapping, and direct mapping have comparable Lin’s cor-
relation and Pearson’s correlation while the NMM shows 
worst performance. In beta band, two naive methods, 
that is, eigen-mapping and direct mapping, exhibit high-
est correlations and SGM methods still outperform NMM. 
The results show strong correlations but high MSE 
between empirical FCs and SCs. This implies that while 
the SC can capture the overall changing trend in FC, it 
does not provide valuable insights into the magnitude of 
FC. It is also possible that Pearson correlation may be 
less informative as a performance metric than the other 
metrics, likely due to its insensitivity to scale.

4.7.1.  Execution time comparison

In addition to visual resemblance and numerical perfor-
mance of each model, the execution time required to 
achieve those results is also a matter of high practical 
impact. We, therefore, compare the computation time of 
two modeling methods, SGM-SBI and coupled NMM. In 
a machine with Intel Xeon W-2255 CPU, SGM-SBI takes 
119.119  seconds to fit the model to a single subject’s 
MEG data, and 0.426  second to get 1000 samples on 
average for the alpha band. Using the same machine, 

band, and subjects, the NMM model takes approximately 
an average of 1849.814 seconds to complete fitting using 
the evolutionary algorithm and produce final results. The 
SGM-SBI is superior in terms of computational efficiency 
compared with NMM. While 2 minutes per subject is not 
quite instantaneous, it is in practice nearly so. The NMM 
simulations in contrast take around 30  minutes per 
subject—this is a vast improvement over prior iterations 
of NMM methods, yet its execution time may not be con-
sidered practical in some settings.

4.8.  Performance of model fitting on regional level

We evaluate the performance of model fitting for SGM-
SBI and SGM-SBI-shared at the regional level by calculat-
ing the Pearson’s correlation between the corresponding 
columns of the empirical and estimated FC matrices. In 
Panel A of Figure 6, we display the mean Pearson’s cor-
relation between the empirical and estimated FCs for 
each ROI across all subjects in delta, theta, alpha, and 
beta  bands for both SGM-SBI and SGM-SBI-shared. 
SGM-SBI and SGM-SBI-shared show similar patterns 
across all bands. In delta, theta, and alpha bands, the 
mean Pearson’s correlation is above 0.5 for most ROIs, 
while for beta band, the mean Pearson’s correlation is 
below 0.5 for most ROIs. Another observation is that 
across the brain, the mean Pearson’s correlation is higher 
in parietal and temporal lobes compared with other 
regions. We also conduct the one-sample t-test versus 0 
for the Pearson’s correlation for each ROI and the nega-
tive log p-values are shown in Panel B of Figure 6. To have 
a meaningful test, we standardize the Pearson’s correla-
tion via subtracting the mean and dividing by the standard 
deviation of the Pearson’s correlation from spinning the 
corresponding ROIs of the empirical FCs on the brain sur-
face as we do in Section 4.5. The cutoff value is set to 
−log 0.05/68( ) ≈ 7.2 after Bonferroni correction and only 
significant results are shown. In delta, theta, and alpha 
bands, most of the ROIs have significant Pearson’s cor-
relation, while for beta band, most of significant ROIs are 
located in the parietal and temporal lobes.

4.9.  Individual-level results

We select two representative subjects to show the 
individual-level results. Specifically, we choose the sub-
jects with the Pearson’s correlation between the empiri-
cal FC and model-predicted (SGM-SBI model) FC closest 
to the mean of all subjects on alpha band. The results are 
shown in Figures S.1 and S.2.

For both subjects, the real part of the first three com-
plex Laplacian eigenvectors in the alpha band (Panel A of 
Figs. S.1 and S.2) is very similar to the mean eigenvectors 
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across all subjects (Fig. 2A). The estimated FCs from two 
subjects are also consistent with the mean estimated FCs 
across all subjects (Fig. 3). In terms of the posterior distri-
butions of the SGM parameters, the group-level results 
show some bi-modal distributions for transmission speed 
v in delta and beta bands (Fig. 4). In the individual-level 
results, the posterior distributions only show a single peak 
for all three SGM parameters in all bands (Panel B of Figs. 
S.1 and S.2). Though, the peak locations for the transmis-
sion speed v in delta and beta bands are different between 
the two subjects.

5.  DISCUSSION

5.1.  Summary and significance of key findings

In this work, we advance the emerging concept of struc-
tural connectome (SC) graph harmonics in the brain by 
imbuing them with biophysical mechanisms and by 
demonstrating that a parsimonious combination of har-
monics is capable of recapitulating frequency band-
specific FC of MEG recordings. The study fills a critical 
gap in the field, wherein harmonics have been shown to 
possess predictive power for capturing FC but have not 

Fig. 6.  The results of the regional level evaluation for SGM-SBI and SGM-SBI-shared. (A) The mean Pearson’s correlation 
between the empirical and estimated FCs for each ROI across all subjects in delta, theta, alpha, and beta bands. (B) The 
negative log p-values of the one-sample t-test versus 0 for the Pearson’s correlation for each ROI across all subjects 
in delta, theta, alpha, and beta bands. The cutoff value is set to −log 0.05/68( ) ≈ 7.2 after Bonferroni correction and only 
significant results are shown.
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been shown to possess biophysical meaning, while bio-
physically driven computational models do not have 
direct involvement of graph harmonics. Our goal was to 
combine both the elegance of graph harmonics and the 
biophysical relevance of detailed NMMs. We achieved 
this goal via a biophysical linearized model of the propa-
gation of brain activity on SC, leveraging and extending 
advances in modeling wide-band MEG power spectra 
using graph eigenspectra (Raj et al., 2020; Verma et al., 
2022). We provided for the first time a fully frequency-
resolved description of FC, at any arbitrary frequency. 
This description is direct and does not require either sim-
ulations in time or indirect calculation of FC via the 
narrow-band Hilbert envelope (Cabral et  al., 2014; 
Tewarie et al., 2022).

The resulting graph model has only three global and 
invariant parameters, each with a well-understood bio-
logical meaning: characteristic time scale of long-range 
projection neurons τG (unit: ms), axonal conductance 
speed v (m/s), and the connectome coupling constant α 
(unitless). It is, therefore, noteworthy that empirical FC, 
which has a prominent spatial organization, can be suc-
cessfully predicted by a model consisting of only three 
spatially invariant parameters. The implication is that 
spatial variance in FC is directly a consequence of the 
spatial distribution of the low graph harmonics of SC. 
Note that local model parameters, which were critical in 
prior fitting of SGM to wide-band spectra, are effectively 
removed in the current context following normalization of 
the SGM covariance matrix by its diagonal. This makes 
intuitive sense, since local processes may affect local 
spectral power but not long range synchrony between 
distant regions.

In order to convert these theoretical advances into a 
practical tool, we designed a speedy and flexible deep 
learning network for inferring the biophysical parameters. 
After the network had been trained on sufficient simulation-
based training samples, it could achieve model parameter 
inference almost instantaneously for a given subject. 
Parameter inference has historically been an intractable 
challenge in neural system modeling, and prior coupled 
NMMs require a combination of hand tuning and grid 
search (Glomb et al., 2022; Xie et al., 2019). In contrast, 
we were not only able to obtain best-fit biophysical 
parameters very quickly (within seconds) but also to give 
their full posterior distributions and accompanying confi-
dence bounds. We demonstrated this inference ability, 
critical for potential practical applications of model-based 
SC-FC inference, on a study of 36 healthy individual 
subjects’ MEG recordings. With the analytical frequency-
resolved description of FC, parameter inference is sub-
stantially faster and requires limited memory for model 
computations. By incorporating the SBI framework for 

inferring parameters, obtaining the posterior densities of 
parameters is tractable. This resolves a key intractable 
challenge inherent in the inference of current coupled 
NMMs, which require lengthy and massive numerical sim-
ulations, and opens the door to future practical applica-
tions of model fitting to MEG data. Remarkably, using only 
the three biophysical parameters and only a few (3–5) 
graph harmonics, the model is able to reproduce empiri-
cal MEG FC in all frequency bands of interest, quantifiably 
better than all competing benchmark methods we tested. 
The trained DL-based SBI network gives full posterior dis-
tributions and confidence bounds, which are necessary 
for applications where a measure of uncertainty is helpful.

Finally, we explored an important issue in prior mod-
eling studies on MEG: would the model parameters be 
frequency band specific, or global for a given subject? 
Most prior successes in theoretical fitting of MEG data 
appear to be band specific, implying very different bio-
physical properties in different bands. This is long under-
stood to be biologically implausible, since the parameters 
pertain to biological systems and should not vary across 
frequencies. The emergence of the correct frequency 
dependency should be a key test of a successful com-
putational neural model, a test that is rarely passed in 
existing literature. Our demonstration that a single 
parametrization of the harmonic model, that is, a unique 
combination of parameters τG,v,α, is capable of repro-
ducing MEG FC in all frequency bands of interest, gives 
renewed assurance that our computational model 
passes this test of plausibility. Indeed, we were able to 
show that the band-shared model achieved similar FC 
matrix visualization (Fig. 3), parameter posteriors (Fig. 4), 
and numerical performance metrics (Fig. 5) when com-
pared with SGMs fitted to each frequency band sepa-
rately. If anything, the shared model showed evidence of 
superior disambiguation and consensus among bands.

5.2.  Proposed model is tractable compared with 
coupled neural mass simulations

We numerically compared (Fig. 5) the proposed SGM-SBI 
model with a current and open-source implementation of 
NMM simulations. Across all results we evaluated, the 
connectome-coupled NMM was consistently one of the 
least accurate predictors of FC in all bands. This might 
appear surprising at first, given the deep and wide popular-
ity of NMMs in the field, their long history, and their ability to 
accommodate biological processes of high complexity. It 
is, therefore, useful to understand the issues that might 
impact the accuracy and inference performance of these 
methods.

While coupled NMMs have been widely used to cap-
ture MEG FC, they suffer from some challenges that can 
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make robust inference of model parameters intractable, 
discussed in detail previously (Raj et al., 2022; Xie et al., 
2019). First, NMMs simulations take a long time and 
compute power since they require numerical integration 
of coupled differential equations. Second, since these 
nonlinear model solutions can be vastly different depend-
ing on the parameter regime, certain model parameters 
are hand tuned to be near a bifurcation point and only the 
remaining parameters are optimized for by fitting to the 
empirical data, typically using a grid search optimization 
(Breakspear, 2017; Sanz-Leon et al., 2015). Lastly, most 
prior NMMs studies have focused on fitting to group-
level FC (Cabral et al., 2014; Deco et al., 2017; Nakagawa 
et al., 2014; Tewarie, Abeysuriya, et al., 2019) with fewer 
studies focused on fitting to individual-level FC (Abeysuriya 
et al., 2018; Kulik et al., 2023; Tewarie, Hunt, et al., 2019). 
SGM is able to address all of these challenges given its 
analytic closed-form solution consisting of only a few 
global parameters, and its ability to fit to individual-level 
FC fast with the SBI framework, taking 2 minutes com-
pared with 30 minutes by NMM.

A key point to note is that most neural mass models 
are nonlinear and can, therefore, exhibit a rich dynamical 
repertoire in their oscillatory behavior (Cabral et al., 2014, 
2017; Siettos & Starke, 2016). Such behaviors are quan-
tified in terms of bifurcations defining solution regimes 
that are quantified by fixed points, limit cycles, and cha-
otic behavior. Since the current graph model is linear, it 
can only exhibit stable or oscillatory, but no chaotic 
behavior (Verma et al., 2023). It is still an open question 
whether such nonlinearities are required to capture mac-
roscopic structure–function relationships. Indeed, mac-
roscopic spatial and frequency patterns are largely 
identical across individuals (Freeman & Zhai, 2009; He 
et al., 2010; Robinson et al., 2005). It has been suggested 
that emergent long-range activity can be independent of 
microscopic local activity of individual neurons (Abdelnour 
et  al., 2014; Destexhe & Sejnowski, 2009; Mišić et  al., 
2014, 2015; Robinson et  al., 2005; Shimizu & Haken, 
1983), and that these long-range activities may be regu-
lated by the long-range connectivity (Abdelnour et  al., 
2015; Deco et  al., 2012; Jirsa et  al., 2002; Nakagawa 
et  al., 2014). In addition, linear models outperformed 
nonlinear models in predicting resting-state fMRI time 
series (Nozari et al., 2020). Therefore, to capture macro-
scopic phenomena, the present deterministic graph 
model may be sufficient, with the additional advantage of 
tractable model inference.

5.3.  Alternative inference methods

In prior studies that use a similar spectral graph model 
(SGM) (Raj et al., 2020, 2022; Verma et al., 2022, 2023), 

annealing-based optimization was used for inference, 
which suffers from two limitations. First, it can only pro-
vide a single point estimate of the parameters. In a neural 
model like SGM, it is desirable to find out not only the 
best, but also all parameter settings, compatible with the 
observed data. The variability of the parameters under 
the observation can provide more insights about the 
neural models and processes (Alonso & Marder, 2019; 
Gonçalves et  al., 2020). Annealing optimization fails to 
meet this requirement. Moreover, it is difficult to incor-
porate prior knowledge about neural processes with 
annealing, which further limits its application. The free 
parameters in neural models typically relate to biological 
processes, hence their inference must utilize constraints 
that avoid unreasonable solutions. Using prior knowl-
edge of these biological quantities can not only increase 
optimization efficiency but also make them more robust.

It is also possible to use Markov chain Monte Carlo 
(MCMC) methods (Raftery & Lewis, 1996) to conduct 
Bayesian inference, as our model has a closed-form 
solution in the Fourier frequency domain. However, the 
posterior densities are challenging to analyze, a long 
burn-in step is required for MCMC methods to reach the 
equilibrium distribution, and samples from the equilib-
rium distribution are correlated. Thus sampling from 
MCMC can be time consuming for SGM. Previously, an 
MCMC-based inference was unable to capture the spec-
tral features using a nonlinear neural mass model (Xie 
et al., 2019). In comparison, SBI is more flexible and can 
handle complicated likelihood functions. More impor-
tantly, SBI is trained upfront with simulation samples, 
which helps to reduce the requirements of real data and 
greatly improves inference speed.

Dynamic causal modeling (DCM) (Kiebel et al., 2008; 
Pinotsis et al., 2012) is a Bayesian approach for estimat-
ing and comparing models of functional signals (e.g., 
fMRI, MEG, or EEG time series). The activities of neuronal 
populations are modeled by systems of differential equa-
tions representing synaptic coupling and its plasticity. 
The “hidden” neuronal dynamics are linked to measured 
time series data through a biologically grounded forward 
model. Recent work on regression DCM (Frässle et al., 
2017, 2018) proposes local neural mass models formu-
lated in the steady state frequency domain, with the 
effective connectivity evaluated from the cross spectra. 
Such models assume numerous degrees of freedom, 
while the present SGM requires only three global param-
eters. Hence there is a key difference in the goals and 
outcomes of DCM and the present study: the former 
seeks to estimate the entire matrix of pairwise associa-
tions from the time series data, whereas the latter seeks 
to enforce SC as the basis for predicting FC. Another 
important difference between DCM and SGM is that 
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DCM requires variational Bayesian inference, whereas 
here we leveraged the SBI tool for posterior inference of 
the global SGM parameters with ranges based on under-
lying biophysics.

5.4.  Limitations

In this work, FC was constructed using absolute coher-
ence, while other groups have favored partial coherence 
(Wodeyar & Srinivasan, 2022). While we enforced spatial 
uniformity in model parameters, it is possible that some 
spatial heterogeneity may help improve model fits—an 
aspect we will explore in the future. Specifically, it might 
be necessary to accommodate the variation of the 
speed parameter as a function of the amount of myelin-
ation and synaptic strength in different regions. Various 
methodological limitations are relevant here. Our struc-
tural connectivity network was obtained based on 
diffusion-weighted images which are only an approxi-
mation of white-matter axonal connections. The MEG 
functional network was source reconstructed using a 
minimum-variance adaptive beamformer, a process 
which may be ill-posed and one that has difficulty in 
estimating deep brain sources (Hillebrand & Barnes, 
2005; Henson et  al., 2009). Despite these approxima-
tions, macroscopic spatial and frequency patterns are 
largely robust across individuals (Freeman & Zhai, 2009; 
He et  al., 2010; Robinson et  al., 2005). We have dis-
cussed these in detail in prior works (Raj et al., 2022; Xie 
et al., 2021). Our model’s FC output is directly compara-
ble with coherence-based FC, due to the connection 
with cross-spectral density. The relevance of our model 
in producing other types of FC, for example, amplitude 
envelope correlation, is unclear at this time, and will be 
explored in future work.

Another limitation is the assumption, noted in Sec-
tion  2.2, that the driving input signal is uncorrelated 
across regions and across time. We assume for simplicity 
that ε P(ω )P(ω )H( ) has independent and identically dis-
tributed white spatial and temporal covariance structure. 
This assumption greatly simplifies the mathematics and 
the final expression for the model-predicted spatial cova-
riance. However, in some instances, even at rest, the 
driving function may have a specific spatial covariance 
structure, such as those related to thalamocortical drive 
or correlated sensory or motor signals. We plan to explore 
the influence of such spatial covariance structures in 
future work. In contrast, temporal covariance in the driv-
ing function will only result in frequency-specific scaling 
of the model covariance, altering predictions but not the 
overall model architecture.

Furthermore, our model and empirical FC calculations 
do not consider the role of spatial leakage which is 

considered a major confound in MEG FC measures, 
especially at voxel level imaging. Incorporating spatial 
leakage in model FC calculations to match with empirical 
FC that account for spatial leakage is something we will 
pursue in the future.

5.5.  Potential applications

Given the ease of parameter inference, this work can be 
readily extended to investigate biophysical alterations 
resulting in abnormal FC in diseases, such as in Alzhei-
mer’s disease (Alonso et al., 2011; Escudero et al., 2011; 
Franciotti et al., 2006; Ranasinghe et al., 2014), epilepsy 
(Li et al., 2022), addiction (Racine et al., 2017), and mul-
tiple sclerosis (Lassmann & Bradl, 2017), to name a few. 
It can also be used to examine underlying biophysical 
mechanisms that shape FC in processes such as cogni-
tion (Beppi et  al., 2021). Since the proposed graph 
model parameters have biophysical interpretability, 
inferring them can suggest meaningful biophysical alter-
ations in the excitatory and inhibitory neuronal popula-
tions that can result in changes in FC. Previously, we 
have shown such alterations at a local level in Alzhei-
mer’s disease by investigating the empirical MEG spec-
tra (Ranasinghe et al., 2022). Inferring such biophysical 
mechanisms is unfeasible with examining raw neuroim-
aging data alone, or with models where parameter infer-
ence is intractable. Additionally, the posterior densities 
of model parameters provide us with error bounds that 
can be useful for clinical applications, specifically for 
identifying biophysical markers of disease. In the future, 
we will also aim at simultaneously capturing both FC 
and power spectra using graph harmonics, for example, 
Raj et  al. (2020). This will aid in identifying common 
underlying biophysical mechanisms that shape both 
spectra and FC.
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