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Abstract

Compared with most of the existing phase I designs, the recently proposed

calibration-free odds (CFO) design has been demonstrated to be robust, model-

free, and easy to use in practice. However, the original CFO design cannot handle

late-onset toxicities, which have been commonly encountered in phase I oncol-

ogy dose-finding trials with targeted agents or immunotherapies. To account for

late-onset outcomes, we extend the CFO design to its time-to-event (TITE) ver-

sion, which inherits the calibration-free and model-free properties. One salient

feature of CFO-type designs is to adopt game theory by competing three doses at

a time, including the current dose and the two neighboring doses, while interval-

based designs only use the data at the current dose and is thus less efficient. We

conduct comprehensive numerical studies for the TITE-CFO design under both

fixed and randomly generated scenarios. TITE-CFO shows robust and efficient

performances compared with interval-based and model-based counterparts. As a

conclusion, the TITE-CFO design provides robust, efficient, and easy-to-use alter-

natives for phase I trials when the toxicity outcome is late-onset.
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1 | INTRODUCTION

As the first-in-human study, the phase I trial is a crucial step during the development of new treatment, which directly
affects the subsequent phase II or III trials. The main target of a phase I oncology trial is to determine the maximum
tolerated dose (MTD) which is typically defined as the dose with the dose-limiting toxicity (DLT) probability closest to a
pre-determined target toxicity rate.1 The major barrier for conducting a phase I trial is the limited number of available
subjects,2 which makes the identification of MTD rather challenging.

Currently, depending on whether to adopt a model assumption on the dose–toxicity curve or not, the phase I
designs have two mainstreams: the algorithm-based (model-free) and the model-based approaches. Examples of the
algorithm-based methods include the 3þ3 design,3 which is the most commonly used design for phase I oncology tri-
als, the cumulative cohort design (CCD),4 the modified toxicity probability interval (mTPI) design5 and the Bayesian
optimal interval (BOIN) design.6 Recently, more algorithm-based designs have emerged. For example, the keyboard
design was developed7 by partitioning the toxicity probability scale into more and shorter intervals. Inspired by the uni-
formly most powerful Bayesian test,8 Lin and Yin9 proposed the uniformly most powerful Bayesian interval (UMPBI)
design for phase I dose-finding trials. The algorithm-based methods typically only consider the data at the current dose
level for the next dose assignment with no regard to data at other dose levels, thus are generally less efficient compared

Received: 3 November 2022 Revised: 2 April 2023 Accepted: 6 April 2023

DOI: 10.1002/pst.2304

Pharmaceutical Statistics. 2023;22:773–783. wileyonlinelibrary.com/journal/pst © 2023 John Wiley & Sons Ltd. 773

https://orcid.org/0000-0002-1932-1336
https://orcid.org/0000-0003-3276-1392
mailto:guosheng.yin@imperial.ac.uk
http://wileyonlinelibrary.com/journal/pst
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fpst.2304&domain=pdf&date_stamp=2023-04-24


with the model-based designs, which consider accrued information at all dose levels. The most popular model-based design
is the continual reassessment method (CRM)10,11 and it often uses a single unknown parameter to link the true toxicity
rates with the prespecified toxicity rates at different dose levels. Due to the popularity of the CRM, it has many
extentions12–15 aiming for enhancing its practical performance. Another model-based design, called the escalation with
overdose control (EWOC),16 pays more attention to the safety aspect in a phase I trial. Lin and Yin17 devised the nonpara-
metric overdose control design, enhancing model robustness with little sacrifice on trial efficiency. The approximate Bayes-
ian computation (ABC) design18 is another method, which utilizes the ABC to draw the posterior samples of DLT rates.

For the aforementioned designs, the DLT outcome is assumed to be ascertainable immediately after trial participants
receive the treatment. Nevertheless, there has been a trend that more and more clinical trials investigate noncytotoxic ther-
apies such as molecularly targeted therapies and immunotherapies whose toxicity outcomes are often late-onset.19–21 Such
late-onset toxicity causes new challenges for dose finding because the DLT data required for dose assignment may not be
available at the decision-making time and thus become missing data. Several phase I designs are proposed for the late-onset
DLTs by extending the original design to accommodate time information of delayed outcomes, including the time-to-event
CRM (TITE-CRM) design,22 TITE-CCD design,4 TITE-EWOC design23 and TITE-BOIN design.19 The fractional design is
another family of approaches to imputing the unobserved toxicity data by fractionizing the binary outcome with the well-
known Kaplan–Meier estimator,24 which does not need to assume any parametric survival distribution. Chapple and
Thall25 demonstrated a Bayesian design for precision dose finding based on time-to-toxicity in a phase I clinical trial with
two or more patient subgroups. Through a novel formulation and approximation of the likelihood of the observed data, Lin
and Yuan26 proposed a general methodology for model-assisted designs to handle pending DLT outcomes. Further, a time-
to-event Bayesian optimal interval design27 was developed to accelerate the dose-finding process by utilizing toxicity grades
based on both cumulative and pending toxicity outcomes.

For the existing phase I designs, a salient issue for their implementation is the design parameter calibration. No
matter whether a design is model-based or algorithm-based, calibrating the design parameters is typically required in
order to achieve good operating characteristics. The calibration step may increase the difficulty and burden for con-
ducting a phase I trial. Moreover, as there is very limited information on the treatment prior to a phase I trial, the cali-
bration step may not be reliable that guarantees good performance of the trial. Therefore, both algorithm-based and
model-based methods could be at risk of using inappropriate parameters of the design, which leads to compromised
dose assignment and incorrect MTD identification.

To address the calibration problem and ease the implementation of a phase I design, a novel calibration-free odds
(CFO) design has been proposed.28 As indicated by the name, the CFO design does not require to calibrate any essential
design parameter. To make it calibration-free, the CFO design adopts the game competition idea, which compares the
evidence supporting dose de-escalation and escalation at the current dose level and its two neighboring doses. Similar
to a two-player game, one tries to push the dose up and the other tries to push it down. The MTD can be reached when
this competition game achieves an equilibrium.

To accommodate late-onset toxicity outcomes, we extend the CFO design to the time-to-event CFO (TITE-CFO)
design. The TITE-CFO design inherits the model-free and calibration-free properties of the original CFO, which makes
it also easy to use in practice. The TITE-CFO design shows satisfactory performances in the extensive simulation studies
in comparison with other competitors. Especially, CFO-type designs are robust, efficient, and safe under different set-
tings and dose-toxicity scenarios. The dose escalation and de-escalation rules can be pre-tabled for practical use. There-
fore, they can be regarded as useful and easy-to-use alternatives for conducting phase I trials.

The remainder of the article is organized as follows. In Section 2, we introduce the CFO and TITE-CFO designs, for which
a trial example is used for illustration. In Section 3, we give the evaluation methods and compare the TITE-CFO design with
other phase I designs through extensive simulation studies. Section 4 concludes this paper with some discussions.

2 | METHODS

2.1 | The CFO design

Borrowing the idea from game theory, the CFO design assigns the dose level for the next cohort of subjects by compar-
ing the evidence from the current dose level and its two neighboring dose levels.28 More specifically, after enrolling n
cohorts of patients, we can calculate the odds of the true DLT rates being greater than the target DLT rate for the cur-
rent dose level and its two neighboring (left and right) dose levels, denoted as OL,OC ,ORð Þ. For k¼ L,C,R, let pk denote
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the toxicity probability at dose level k, and xk and mk are the corresponding number of DLTs and number of patients,
respectively. The odds of pk >ϕ is calculated as

Ok ¼ Pr pk >ϕjxk,mkð Þ
Pr pk ≤ϕjxk,mkð Þ

for k¼L,C,R corresponding to left, current and right doses. Similarly, the odds of the true DLT rates being smaller than
the target DLT rate, OL,OC,OR

� �
, can also be obtained for the three dose levels. That is, the reciprocal Ok ¼ 1=Ok repre-

sents the odds of pk ≤ϕ.
Intuitively, the odds OC represents the evidence of the current dose level being overly toxic. If the value of OC is

large, we should consider dose de-escalation. The odds OL measures the evidence of the dose level on the left side of the
current dose level being overly tolerable. When OL is large, de-escalation is undesirable. Similar to a two-player game,
we compare the evidence from OC and OL. If the evidence from odds OC is stronger, we prefer dose de-escalation, while
if the evidence from odds OL is stronger, it is more reasonable to stay at the current dose level. By competing odds OC

with odds OL, we can obtain a vote between the decision on dose de-escalation and dose remaining unchanged.
The competition between two odds can be summarized in the ratio OC=OL, for which a larger value suggests dose de-

escalation to be the desirable decision. Because we adopt the posterior distribution of the DLT rate to calculate the odds
values, the ratio OC=OL implicitly takes the sample size into consideration. When the same size increases, the variance of the
posterior distribution diminishes, yielding more reliable evidence for dose assignment decisions.28 To obtain a suitable thresh-
old value γL for deciding whether the evidence is strong enough (i.e., whether the odds ratio OC=OL is large enough to
trigger de-escalation), we minimize the probability of making a wrong vote, that is, the probability that the vote is
against the true situation.

Analogously, we can obtain a vote between staying at the current dose and escalation by competing odds OC against
OR with respect to the corresponding threshold value γR.

By aggregating the two votes, we obtain the decision on which dose level to be assigned for the next cohort as shown
in Table 1. The mathematical details on how to calculate the odds and threshold values are provided in Appendix A.1.

When the current dose level is the lowest or highest (i.e., at the boundary), there is only one neighboring dose. In
such boundary cases, we only need to calculate the odds ratio and the decision rule on one side and make the
corresponding decision based on one vote as shown in Table 2.

As an illustration, we consider a phase I trial with the target DLT rate 0:3. Suppose that at a certain point of the
trial, 2 out of 6 patients experienced toxicities at the current dose level. At the left neighboring dose level, there was no
DLT outcome for 3 treated patients. At the right neighboring dose level, 2 toxicity outcomes were observed among 3
treated patients. The two threshold values in the CFO design are γL,γRð Þ¼ 0:348,0:318ð Þ. The odds ratios are
OC=OL,OC=OR
� �¼ 0:046,0:027ð Þ and both are smaller than the corresponding threshold values. By the rules in Table 1,
the trial should stay at the current dose level. Hypothetically, if at the current dose level and its right neighboring dose
level, both numbers of the observed DLT outcomes are reduced to 1, the odds ratios would change to
OC=OL,OC=OR
� �¼ 0:004,2:952ð Þ while the threshold values are still the same γL,γRð Þ¼ 0:348,0:318ð Þ, leading to the
decision of dose escalation for the next cohort.

TABLE 1 Dose escalation and de-escalation rules of the CFO design.

OC=OL > γL

Yes (De-escalation) No (Stay)

OC=OR > γR Yes (Escalation) Stay Escalation

No (Stay) De-escalation Stay

TABLE 2 Dose escalation and de-escalation rules of the CFO design when the current dose level is the lowest or highest.

Current dose Rule Yes No

Lowest dose OC=OR > γR Escalation Stay

Highest dose OC=OL > γL De-escalation Stay
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According to the illustrative example, the CFO design does not require input of any essential design parameters for
its implementation. We only need the target DLT rate and the observed data from the current dose level and its two
neighboring dose levels for making the decision among de-escalation, staying at the current dose or escalation. This fea-
ture distinguishes the CFO design from most of other adaptive phase I designs. For example, the CRM requires a para-
metric model skeleton, which can affect the performance of the phase I trial significantly. These parameters may
undermine the robustness of the design and hamper its use in practice.

Our CFO design is developed based on the observation that dose level skipping is typically not allowed during the
implementation of a phase I trial. Therefore, the decision rule of the CFO design utilizes the information from three
dose levels by mimicking a two-player game: the left player of the current dose tries to push the dose up while the right
player tries to push it down. This feature makes the CFO design more efficient than most of the algorithm-based
methods, because the decision rule of an algorithm-based design is typically based on the data from the current dose
level only. During a phase I trial, most of the patients are assigned to the dose levels around the true MTD, so ignoring
information from boundary dose levels at the far end would not incur much information loss. Such compromise helps
the CFO design to avoid adopting any parametric model assumption, but still deliver performances close to model-
based designs. In particular, the large-scale numerical studies demonstrate that the CFO design yields comparable per-
formance to the CRM,28 yet its robustness advantage over the CRM is also noted.

Given the target DLT rate, the threshold values γL,γRð Þ do not depend on the DLT outcomes. As a result, these
threshold values can be calculated beforehand, which greatly eases the implementation of the CFO design. In
Figure A.3 of Appendix C.2, we show the threshold values when the target DLT rates are 0:2, 0:25, and 0:3, respectively.
In general, the threshold values for γR are larger than those for γL, potentially indicating the CFO design has a more for-
midable obstacle to escalate than to de-escalate (i.e., a conservative dose escalation scheme). When the treated number
of patients increases, the threshold values exhibit a corresponding ascending pattern, signifying the CFO design
requires stronger evidence to move the dose as more information is accrued.

2.2 | The TITE-CFO design

The original CFO design requires the DLT outcome can be ascertained immediately after the treatment is adminis-
trated, so that the dose level for the next cohort of subjects can be timely decided. In reality, some phase I trials may
require a long assessment window, say 90 days, to determine the DLT outcome. In such cases, if the accrual rate is fast,
for example two patients per week, the implementation of the CFO design would face the logistic difficulty, due to
pending outcomes upon arrival of a new cohort. If we ignore the pending DLT data, the efficiency of the design is com-
promised because the follow-up data are not fully utilized. To incorporate delayed outcomes, we propose the TITE-CFO
design by taking the late-onset outcomes into consideration.

Originally, the CFO design takes the binary outcome 0 or 1 as input to make the decision. However, the binomial likeli-
hood can also accept a decimal value between 0,1ð Þ as the input. For the TITE-CFO design, the problem boils down how to
impute the pending DLT data with a decimal value between 0,1ð Þ. Intuitively, at the decision time, if an outcome-pending
subject is less likely to experience DLT, the imputed outcome should be small; otherwise, it should be large. As noted
in TITE-CRM and TITE-BOIN,19,22 the follow-up time for the pending data contain rich information about the DLT
outcome. For example, when the assessment window is 90 days, an outcome-pending subject whose follow-up time is
80 days is much more likely to have a non-DLT outcome compared with another outcome-pending subject whose
follow-up time is only 10 days.

We propose to impute the pending outcome by the expectation of the potential outcome given the follow-up time.
At a certain point of a trial, let y denote the binary DLT outcome for a patient treated at dose level k, with y¼ 1 if the
patient experiences DLT, and y¼ 0 if no DLT is observed. The assessment window is τ, and suppose the subject's DLT
outcome is still pending. The follow-up time of the outcome-pending patient is t t< τð Þ and the time to DLT is denoted
by T which has not been observed yet. Following Yuan et al.19 and Cheung and Chappell,22 we assume the time to DLT
follows a uniform distribution over 0,τ½ �. The pending y is imputed as the expectation,

 yjT > tð Þ¼ Pr y¼ 1ð ÞPr T > tjy¼ 1ð Þ
Pr y¼ 1ð ÞPr T > tjy¼ 1ð ÞþPr y¼ 0ð ÞPr T > tjy¼ 0ð Þ¼

pk 1� t=τð Þ
pk 1� t=τð Þþ 1�pkð Þ ,
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where pk is the true DLT rate at dose level k. As pk is unknown, we estimate pk using the Bayesian posterior mean epk
based on the observed data. Given the prior pk �Beta α,βð Þ, we obtain the posterior mean as

epk ¼ xkoþα

mkoþαþβ
,

where xko,mkoð Þ are the number of DLT outcomes and the number of patients who have completed the DLT assessment
at dose level k. By default, we choose α¼ϕ and β¼ 1�ϕ,28 where ϕ is the target DLT rate.

In this way, we can utilize the follow-up time information for dose assignment which increases the efficiency of our
design. For example, given a 90-day assessment window and a target DLT rate of 0:3, suppose there is 1 DLT outcome
out of 3 ascertained subjects at the current dose. The follow-up times for the two pending subjects at the current dose
are 10 and 80 days, respectively. Using our imputation method, the imputed outcomes for the two pending outcomes
are 0:264 and 0:043, respectively. Such results are consistent with our intuition, that is, the pending subject with the
10-day follow-up has a larger chance to experience DLT than the one with the 80-day follow-up. The mathematical
details on calculating the imputed value are provided in Appendix A.2.

After the imputation, we can calculate two odds ratios OC=OL,OC=OR
� �

with both the complete and imputed out-
comes. The decision is further made by comparing the odds ratios with the threshold values γL,γRð Þ as in Table 1.
Because the threshold values do not depend on DLT outcomes, the TITE-CFO design uses the same threshold values as
the CFO design.

The procedure of the TITE-CFO design is detailed as follows:

1. Treat the first cohort of patients at the lowest or prespecified starting dose.
2. Based on the follow-up times of treated patients, impute the pending data for the current dose level and its two

neighboring dose levels.
3. Calculate the odds ratios with both complete and imputed outcomes and make the escalation or de-escalation deci-

sion based on Table 1.
4. Repeat steps 2–3 until the prespecified maximum sample size is reached and select the MTD using the isotonic

regression.29

As a common practice in phase I designs,17,19,28 we impose an overdose control rule to guard patient safety. When
the data suggest the current dose level is over-toxic with high probability, we eliminate the current dose level as well as
those higher dose levels. If the lowest dose level is eliminated due to over toxicity, the trial is terminated immediately.

As an extension of CFO, the TITE-CFO design inherits the desirable properties that it does not require calibration
of any essential parameters, which eases the trial implementation in practice. At the same time, TITE-CFO shows com-
parable performance to the model-based TITE-CRM design as demonstrated in our extensive numerical studies.

2.3 | Trial example

We provide a concrete trial example to illustrate the implementation of the TITE-CFO design. To mimic the real situa-
tion, we add an accrual suspension rule.19 Specifically, if at the current dose or its two adjacent doses, over 50% of the
patients' outcomes remain pending, the accrual process is temporarily halted until further data become available. Con-
sider a phase I trial with a target DLT rate 0:3 and five dose levels under investigation. The assessment window is
3months and the accrual rate is two patients per month. There are a total of 10 cohorts with cohort size 3. We assume
a uniform distribution for the arrival time of each patient.

As shown in Figure 1, the first cohort of subjects was treated at dose level 1, and there was one DLT outcome out of
the three subjects. However, at the time when the first patient of the second cohort arrived, all the three patients in the
first cohort were still pending for DLT outcomes. Based on the suspension rule, the trial is suspended until day
117 when two of the three patients in the first cohort completed the follow-up with non-DLT outcomes. After imputa-
tion, their outcomes were 0,0,0:005ð Þ, and the odds ratio was OC=OR ¼ 6:39 which was greater than the threshold value
γR ¼ 0:09. By the rules in Table 2, the trial escalated the dose to level 2. At the decision time upon arrival of cohort 3,
none of the patients in the second cohort had the full outcome, leading to a suspension until day 234. Up to day
234, the first cohort had complete DLT outcomes 0,0,1ð Þ, while there was still one pending patient in the second cohort.
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The odds ratios at the current dose level 2 were OC=OL,OC=OR
� �¼ 0:12,5:95ð Þ and the threshold values are

γL,γRð Þ¼ 0:81,0:09ð Þ. Based on our TITE-CFO decision rules, dose level 3 was selected for cohort 3. The subsequent
cohorts 4 and 5 were treated at dose level 3 as well. On day 422 when the first patient of the sixth cohort arrived, four
patients had complete outcomes with one DLT while the other four patients' outcomes were still pending. With
imputed data, the odds ratios at the current dose level 3 were OC=OL,OC=OR

� �¼ 0:56,0:00ð Þ which were compared with
the threshold values γL,γRð Þ¼ 0:30,0:24ð Þ. Based on the rules in Table 1, the dose was de-escalated to level 2. The
remaining 4 cohorts were all treated at dose level 3. On day 733, all patients completed their follow-ups and had full
DLT data. Dose level 3 was eventually selected as the MTD, at which 6 out of 21 patients suffered DLT with the esti-
mated DLT rate 0:29 and 95% confidence interval 0:12,0:49ð Þ. Under the TITE-CFO design, the trial took around
733 days to complete. If we adopt the phase I design which requires full DLT assessment for each cohort of patients, it
would take 900 days to finish the trial on average. If we do not adopt the accrual suspension rule with 50% data fully
observed, the TITE-CFO design could finish the trial even sooner.

3 | SIMULATION STUDIES

Simulation configuration: We conduct extensive numerical studies to assess the operating characteristics of the
TITE-CFO design via comparing it with TITE-BOIN19 and TITE-CRM.22 For the TITE-BOIN method, we adopt the
default parameters suggested in Liu and Yuan.6 Following Lin and Yin,17 the TITE-CRM takes the power model where
the skeleton is chosen by the model calibration method30 with a half width of the indifference interval of 0:05. In order
to more thoroughly evaluate the impact of imputation on reducing the trial duration and influencing design precision,
we incorporate the original CFO design,28 for comparison. To streamline the comparison, none of the three late-onset
designs employ a suspension rule. The detailed settings of the methods in comparison are given in Appendix B.2.

We explore eight representative fixed scenarios with the target DLT rate 0:3. To avoid cherry-picking, the eight fixed
scenarios are adopted from the paper of the TITE-BOIN design.19 The detailed information on the eight fixed scenarios
is provided in Appendix B.3. To make our numerical studies more comprehensive, we also compare the three TITE-
designs under random scenarios, which are generated following the method of Paoletti et al.31 as detailed in
Appendix B.4. The average probability difference around the target is controlled at 0.05, 0.07, 0.1, and 0.15 respectively.
Under both fixed and random scenarios, we consider seven dose levels and a total of 12 cohorts with cohort size 3. For
the simulated trials with late-onset toxicity, the DLT assessment window is 3months and the accrual rate is two
patients per month. The patient arrival time follows a uniform distribution. The time to DLT is sampled from a Weibull
distribution, with 50% of DLT events occurring in the second half of the assessment window. All simulation studies are

FIGURE 1 A hypothetical phase I clinical trial using the TITE-CFO design with the suspension rule. Patients are treated in a cohort

size of 3, and the number on the right of the cross � indicates the time when the DLT event occurred.
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repeated for 5000 times. We also explore the case with the target DLT rate 0:2 under both fixed and random scenarios
and the results are displayed in Figures A.1 and A.2 of Appendix C.1.

Performance metrics: We use six performance metrics to evaluate the results for comparing different designs:

1. Percentage of correct selection of the MTD (MTD selection);
2. Percentage of patients allocated to the MTD (MTD allocation);
3. Percentage of selecting a dose above the MTD (overdose selection);
4. Percentage of allocating patients at dose levels above the MTD (overdose allocation);
5. Percentage of the patients suffering DLT (average DLT rate);
6. Average trial duration.

Among the six performance metrics, the first two metrics are the main measurements, reflecting the accuracy and
efficiency of a design, for which the higher the better. Metrics 3–5 quantify the safety aspects of a trial, for which the

FIGURE 2 Simulation results of the CFO, TITE-CFO, TITE-BOIN and TITE-CRM designs with the target DLT rate 0:3 and sample size

36 under eight fixed scenarios. For MTD selection and allocation, a higher value is preferred. For overdose selection and allocation, the

average DLT rate and average trial duration, a lower value is preferred.
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lower the better. The last metric is the average duration time of a trial with late-onset outcomes, for which the shorter
the better.

Accuracy and efficiency evaluation: The results of CFO, TITE-CFO, TITE-BOIN and TITE-CRM are exhibited in
panels A and B of Figures 2 and 3. In both fixed and random scenarios concerning the MTD selection percentage, the
TITE-CRM design yields the overall best performance among three TITE-designs, while the TITE-CFO and TITE-BOIN
deliver comparable results. However, the TITE-CRM's preeminence is not uniformly evident across all instances. In sce-
nario 3, its performance is considerably inferior to the other two contenders, because the CRM is inherently sensitive to
model assumptions due to its model-based nature. With regard to the MTD allocation percentage, the TITE-CRM still
performs the best except in scenario 3, and TITE-CFO delivers consistently better results than TITE-BOIN. While the
CFO design utilizes richer information for deciding the next dose level, it does not show much superiority in the MTD
selection percentage. Nevertheless, it performs the best in terms of the MTD allocation percentage. The results with a
target DLT rate of 0:2 in Appendix C.1 demonstrate different phenomena. The three methods perform similarly in

FIGURE 3 Simulation results of the CFO, TITE-CFO, TITE-BOIN and TITE-CRM designs with the target DLT rate 0:3 and sample size

36 under random scenarios when the average probability difference around the target DLT rate varies from 0:05 to 0:15. For MTD selection

and allocation, a higher value is preferred. For overdose selection and allocation, the average DLT rate and average trial duration, a lower

value is preferred.
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terms of the MTD selection percentage, while the TITE-BOIN marginally underperforms the other two TITE-designs
for the MTD allocation percentage.

Safety evaluation: Based on panels C–E of Figures 2 and 3, the TITE-CRM design shows under the fixed scenarios
notably higher percentages of overdose selection and allocation than the other two TITE-designs, which indicates
TITE-CRM is more aggressive in dose escalation. The TITE-CFO and TITE-BOIN perform similarly in the aspect of the
safety metrics. Under the random scenarios, TITE-CFO shows consistently superior performances than TITE-BOIN for
different configurations. When the average probability difference around the target DLT rate is small, TITE-CRM
performs better than TITE-CFO, but when the difference becomes larger, the performance of TITE-CFO surpasses
TITE-CRM in the safety aspects. The superiority of the CFO design is unequivocally evident in terms of these safety
metrics. Under all configurations, the CFO design is uniformly safer than other three TITE-designs. Under the target
DLT rate of 0:2 as shown in Appendix C.1, TITE-BOIN becomes the most aggressive method, while TITE-CFO remains
to be conservative and safe.

Duration time: Discernible from panel F of Figures 2 and 3, the three TITE-designs exhibit negligible disparities in
the average trial duration. Indeed, for a prototypical design addressing late-onset outcomes, the duration hinges pre-
dominantly upon the patient accrual rate and the overdose control rule, yielding only minute differences among the
three designs. In contrast, the CFO design, devoid of an imputation mechanism, requires full DLT assessment prior to
dose assignment, resulting in an average trial completion time of 36 months. The TITE-CFO, with an approximate
duration of 20 months, significantly reduces the time required in comparison to the original CFO design. This phenom-
enon is similarly observed when the target DLT rate is 0:2, as illustrated in Appendix C.1.

4 | DISCUSSION

Based on the calibration-free and well-performing CFO design,28 for phase I clinical trials, we further take late-onset
outcomes into consideration, by developing the TITE-CFO design. Unlike most of the phase I designs, which use either
“local data” at the current dose or the accumulated data at all doses, both CFO and TITE-CFO borrow the game compe-
tition idea, which utilizes the information from the current, and its two neighboring dose levels. By comparing the evi-
dence from the three dose levels at a time, the CFO-type designs take a middle-ground approach between using
information from one dose level alone or all dose levels.

Because they are model-free and calibration-free, CFO and TITE-CFO are robust and easy-to-use.28 Through
our comprehensive numerical studies, TITE-CFO demonstrates high robustness in comparison to both the rule-
based TITE-BOIN and model-based TITE-CRM designs. Due to the model-based nature, the TITE-CRM design is
sensitive to the selection of the model skeleton, which barricades its usage in practice. As demonstrated by our
simulation studies, the efficiency of the TITE-CFO design is close to that of the TITE-CRM design. This phe-
nomenon is due to the fact that in a phase I trial most of the subjects are assigned to the MTD or its neighbor-
ing dose levels. Therefore, ignoring data from the boundary dose levels far away from the MTD does not incur
much information loss.

In the TITE-CFO, we assume that the time to DLT follows a uniform distribution, which is also shared by the TITE-
CRM and TITE-BOIN designs. Like TITE-CRM22 and TITE-BOIN,19 the TITE-CFO is insensitive to the choice of the
time-to-DLT distribution. In practice, the uniform distribution can be used as the default setting for general purposes. If
there is some prior information on the time-to-DLT distribution, the TITE-CFO can be adapted accordingly with minor
modifications on the imputation method.

Our discussions focus on the phase I trials with a single agent by considering the toxicity only. As a possible future
work, the CFO design can be extended to handle the drug combination trials by comparing the evidence from multiple
drugs. A further avenue of exploration entails its application to the phase I/II trial setting,1 where both toxicity and effi-
cacy outcomes are late-onset. Alternatively, in a more intricate scenario, the two outcomes are competing risk, that is,
the occurrence of the first outcome terminates the other one.32 To facilitate the practical use of the CFO and TITE-CFO
designs, we provide the R code at https://github.com/JINhuaqing/CFOs.
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