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ABSTRACT
Motivated by the wind turbine anomaly detection, we propose a Bayesian hierarchical model (BHM) for the
mean-change detection in multivariate sequences. By combining the exchange random order distribution
induced from the Poisson–Dirichlet process and nonlocal priors, BHM exhibits satisfactory performance
for mean-shift detection with multivariate sequences under different error distributions. In particular, BHM
yields the smallest detection error compared with other competitive methods considered in the article.
We use a local scan procedure to accelerate the computation, while the anomaly locations are determined
by maximizing the posterior probability through dynamic programming. We establish consistency of the
estimated number and locations of the change points and conduct extensive simulations to evaluate the
BHM approach. Among the popular change point detection algorithms, BHM yields the best performance
for most of the datasets in terms of the F1 score for the wind turbine anomaly detection.
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1. Introduction

The wind turbine blade is the core component of the wind power
generation system, and hence the failure of the wind turbine
blade directly leads to the dysfunction of the whole system. One
leading cause of the wind turbine failure is the accumulated
ice that covers the turbine as shown in the left panel of Fig-
ure 1. Typically, the supervisory control and data acquisition
(SCADA) system is used to examine the ice level in real time
by monitoring several signal sequences simultaneously, such as
wind speed, environment temperature and accelerated speed.
Once the ice on the wind turbine reaches a certain level that
may lead to the failure of the system, some of the signals would
exhibit mean shifts as shown in the right panel of Figure 1.

To timely capture the anomalies on the wind turbines, we
apply several existing mean detection algorithms to the signals
generated by the SCADA system, including E-division (ECP)
(Matteson and James 2014), the dynamic programming-based
maximum likelihood estimation (DPMLE) (Maboudou-Tchao
and Hawkins 2013), and the popular structure change detection
algorithm called AutoPlait (Matsubara, Sakurai, and Faloutsos
2014). The vertical red shadows in Figure 2 are the manually
labeled change point locations based on the observed wind tur-
bine blade failure times. Although these labels may not include
all change points, they may serve as the basis for the comparison
among different methods. A method would be considered the
best if the detected change points constitute the smallest set that
contains all the labels. As shown in Figure 2, none of the existing
methods under consideration provides satisfactory results: ECP
tends to select a large number of spurious change points, while
DPMLE and AutoPlait miss almost all the change points.

CONTACT Fei Jiang Fei.jiang@ucsf.edu Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94143.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/TECH.

This phenomenon motivates us to propose a novel algorithm
based on a Bayesian hierarchical model (BHM) to detect mean
shifts among multiple sequences. The BHM naturally borrows
information across multiple sequences by using a prior induced
from the Poisson–Dirichlet process, and hence it can identify
true change points more effectively. In addition, BHM uses the
nonlocal priors to control the false discoveries, which is shown
to yield the smallest detection error in comparison with the
existing methods under consideration. To reduce the compu-
tational burden, we introduce an initial local scan procedure in
our algorithm, and then use the dynamic programming (Bell-
man and Roth 1969; Du, Kao, and Kou 2016) to identify the
change point locations by optimizing the posterior probability.

The contributions of our work are three-fold: (i) We develop
a novel Bayesian method to estimate both the number and
locations of the change points in an integrative manner. Our
method is shown to outperform the competitive ones in both
simulation studies and real application to the wind turbine data.
(ii) We explore the advantages of using nonlocal priors in BHM
for reducing the detection errors of the change points with
multivariate sequences. (iii) We establish the consistency of our
BHM method, in that it can identify the correct number and
locations of change points asymptotically, providing the sample
size is sufficiently large.

The rest of the article is organized as follows. We discuss the
related work in Section 2, and provide the BHM method and
its theoretical properties in Sections 3 and 4, respectively. In
Section 5, we conduct extensive simulation studies to compare
our proposal with some existing methods. Finally, we apply the
proposed method to the wind turbine data in Section 6.

© 2021 American Statistical Association and the American Society for Quality
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Figure 1. The wind turbine blade covered by ice (left) and the mean shifts of the wind speed, environment temperature and accelerated speed (right). The vertical dashed
black line highlights the change-point location.

2. Related Work

The wind turbine anomaly detection problem has been
extensively studied (Tautz-Weinert and Watson 2016) under
different contexts. Other than the standard SCADA system,
novel anomaly physical detectors (Muñoz, Jiménez, and
Márquez 2018) with higher signal-to-noise ratios have been
developed aiming at amplifying the abnormal signals of the
wind turbine failure. However, the practical use of these new
physical detectors is limited due to the high cost (Yang, Court,
and Jiang 2013). Moreover, many anomaly detection algorithms
have been developed to capture the anomalies using the widely
used SCADA system (Tautz-Weinert and Watson 2016). Yang,
Court, and Jiang (2013) proposed a trending method using
bin averaging with output power, wind speed or generator
speed, and a quantifying criterion was introduced based on
a correlation model of historical and present data. Kim et al.
(2011) applied an artificial neural network self-organizing map
approach to the SCADA data, which detected the anomalies
through clustering. Relying upon the correlation analysis and
physics of the system, high-order polynomial models were
developed for the anomaly detection (Wilkinson et al. 2014).
Gray and Watson (2010) introduced a damage model based on a
physical understanding of the particular failure mode of interest
for damage calculation as well as failure probability estimation.
However, all the aforementioned methods rely on additional
knowledge about other wind turbine features, historical data or
domain experience, which are not available in the current wind
turbine dataset. This motivates us to develop a new change point
detection algorithm to identify anomalies solely based on the
signal patterns.

Change point detection algorithms have been widely used
to detect anomalies (Muggeo and Adelfio 2010). Under the
frequentist framework, the change point detection relies on
optimizing certain objective functions, such as a parametric
or nonparametric log-likelihood function (Hawkins 2001; Zou
et al. 2014), quadratic loss (Rigaill 2015), and cumulative sums
(Hinkley 1971; Manogaran and Lopez 2018). The Bayesian
information criterion (BIC) (Yao 1988) and its variants (Yao

and Au 1989; Zhang and Siegmund 2007) are commonly used
for determining the number of change points.

On the other side, the Bayesian algorithms identify the
change point locations by maximizing the posterior distribution
(Martínez and Mena 2014) or the marginal likelihood (Du,
Kao, and Kou 2016). The optimization routines are performed
through the Markov chain Monte Carlo (MCMC) (Barry and
Hartigan 1993; Martínez and Mena 2014) or dynamic pro-
gramming (Du, Kao, and Kou 2016). More recently, Hopfield’s
network has been advocated for use to identify change points
(Fuentes-García, Mena, and Walker 2019). By considering the
randomness in the model parameters and incorporating prior
distributions, Bayesian methods automatically add penalties
on the number of change points (Lavielle 2005). As a result,
the number of change points can be determined seamlessly in
conjunction with their locations (Truong, Oudre, and Vayatis
2018).

Change point problems can also be considered under the
context of the statistical process control (SPC) (Qiu 2013). The
conventional methods for change point detection under SPC are
the Shewhart and cumulative sum charts as well as the exponen-
tial weighted moving average (EWMA) chart (Hawkins, Qiu,
and Kang 2003). Tsiamyrtzis and Hawkins (2005) introduced a
dynamic model to handle the short-run process with the aim
to detect the mean shift. Using a sequential estimation tech-
nique, Zamba and Hawkins (2006) considered the multivariate
change point problem for SPC when the in-control parameters
were unknown. Using an autoregression model, Tsiamyrtzis and
Hawkins (2008) worked on autocorrelated processes with mean
shift under a Bayesian EWMA method. The goal of these change
point detection methods is to detect a single change in the
sequence, while they can be adapted to identify multiple changes
with an unknown number of change points.

To construct the posterior distribution or the marginal like-
lihood under the Bayesian paradigm, one crucial step is to spec-
ify the prior distributions. The commonly used priors for the
mean differences include the local priors (Bertolino, Racugno,
and Moreno 2000), such as normal prior distributions (Du,
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Figure 2. The detection results of three existing methods, namely ECP, DPMLE, AutoPlait, for the wind turbine dataset 1 with n = 8 sequences. The black dashed lines are
the estimated state shift points and the red shadows are the mI-neighborhood of the ground truth.

Kao, and Kou 2016), and nonlocal priors, such as the moment
prior and inverse moment prior distributions (Johnson and
Rossell 2010). The nonlocal priors were first proposed in the
Bayesian hypothesis testing framework to improve the speed of
the accumulation of the evidence in favor of the true null model
(Johnson and Rossell 2010). Jiang, Yin, and Dominici (2018)
applied the nonlocal prior to identify the change points in a
single sequence of data, which leads to a faster convergence rate
compared with the algorithms based on the local priors.

Because the change point detection can be regarded as a
special clustering problem, we can use the exchangeable random
partition distribution (ERPD) (Pitman 1995) to construct the

prior distribution of the segments. The ERPD has been widely
used for clustering problems (Lau and Green 2007; Wade et al.
2018), which penalizes the model complexity (Pitman 2002)
and automatically selects the number of clusters (McCullagh
and Yang 2008). However, ERPD is not directly applicable to
the change point detection, because it does not account for the
order constraints in the change point problem. Martínez and
Mena (2014) proposed to use a modified ERPD, namely the
exchangeable random order distribution (EROD), as the prior
distribution specifically for the change point detection, which
inherits the symmetry and automatic penalization properties of
ERPD.
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In addition to the mean-change detection, many other appli-
cations of change points have been carried out. Matsubara,
Sakurai, and Faloutsos (2014) proposed the AutoPlait method
to detect the changes in the periodic sequences for identi-
fying the structure changes in the signals. Gharghabi et al.
(2017) proposed a fast, low-cost online semantic segmentation
for the structure change detection in cyclic data. Bouchard
and Badler (2007) introduced a Laban movement-based seg-
mentation method for the motion data. Gong, Medioni, and
Zhao (2014) used the kernelized temporal cut method to rec-
ognize action changes in the continuous monocular motion
sequences.

3. Bayesian Multivariate Change Point Detection

3.1. Probability Model

Suppose there are n sequences of signals measured over time,
where correlations exist both between sequences and within
sequences. Let Yik represent the strength of the ith signal at time
k, i = 1, . . . , n; k = 1, . . . , T. Define Yk = (Y1k, . . . , Ynk)

�,
and Y = (Y1, . . . , YT) is an n × T observation matrix and
Y(a,b] = (Ya+1, . . . , Yb) represents the matrix containing the
(a + 1)th to bth columns of Y . Let K = {κ0, . . . , κp+1} be
a generic notation for a set of p change points, with κ0 = 0
and κp+1 = T, and let K0 = {κ00, . . . , κ0,p0+1} be the true
change point set, with κ00 = 0 and κ0,p0+1 = T. In addition,
let {Ns, s = 0, . . . , p} = {(κs+1 − κs), s = 0, . . . , p} be a col-
lection of numbers of observations between consecutive change
points.

Let Yi,κs = (κs − κs−1)
−1 ∑κs

k=κs−1+1 Yik, with Yi,κ0 = 0. We
assume

Yik − Yi,κs − μis
ωs

∣∣K, μis, ωs ∼ π0, for k ∈ (κs, κs+1],
μis ∼ πμ(μis),
ωs ∼ πω(ωs),

(N0, . . . , Np) ∼ πk(K), (1)

where π0 is the likelihood function selected according to the
data distribution. It is worth emphasizing that we model the
difference Yik − Yi,κs rather than Yik, and such a modeling
strategy allows us to better control the convergence rates by
selecting suitable priors on the mean differences. In model (1),
we assume that all the sequences share the same variance for
each segment, which can help to reduce the computational
burden and numerical error in the optimization procedure. As
shown in Table A.1 (supplementary material), using the same
variance parameter does not undermine the performance of our
algorithm. In practice, when the sequences have very distinct
variances, we may standardize the variance for each sequence
before the implementation of our detection procedure. Typi-
cally, we use a normal likelihood if the data do not contain
outliers, and use a t distribution if the data are contaminated
with a substantial amount of outliers. In practice, the existence
of outliers can be determined by the generalized extreme stu-
dentized deviate test (Rosner 1983), as discussed in Section A.3
of the supplementary materials.

3.2. Prior Specifications

Change point detection is closely related to a special clustering
algorithm in which each cluster only contains the neighborhood
points. This motivates us to consider ERPD (Pitman 1995;
Gnedin and Pitman 2006) induced from the Poisson–Dirichlet
process as the prior distribution for (N0, . . . , Np), which has
been widely used in clustering problems (Broderick, Jordan, and
Pitman 2013). By choosing σ = 0 or α = 0, the Poisson–
Dirichlet process reduces to the Dirichlet or the normalized
stable processes, respectively (Martínez and Mena 2014). The
ERPD strikes a good balance between the generalization and
complexity. As a special case of Gibbs-type priors, it places a
tradeoff on the prior distribution between being informative
and noninformative about the number of change points (Lijoi,
Mena, and Prünster 2007). However, this prior may classify
non-neighborhood signals into the same group, and hence the
resulting clusters would contradict with the property of the
change points. To account for this neighborhood constraint, the
probability mass function of ERPD is modified as

πk(K) = T!
(p + 1)!∏p

h=0 Nh!
·
∏p

s=1(α + sσ)∏T−1
j=1 (α + j)

p∏
h=0

Nh−1∏
i=1

(i − σ),

σ ∈ [0, 1), α > −σ ,
(2)

which corresponds to the probability mass function of EROD
(Pitman 2002; Martínez and Mena 2014). The first term in
Equation (2) accounts for the neighborhood constraint.

Under the prior distribution in Equation (2), the marginal
distribution of the number of change points p can be derived as

Pr(p = l) =
∏l

i=1(α + iσ)

σ l+1 ∏n−1
i=1 (α + i)

1
(l + 1)!

l+1∑
j=0

(−1)j
(

l + 1
j

) n−1∏
i=0

(−jσ + i).

We can select the values of (α, σ) via encoding our prior brief
in the number of change points for the data. As discussed
in Martínez and Mena (2014), the parameter σ plays a more
important role for detecting the change points, and thus it
deserves more attention in practice.

The prior for the mean difference, πμ, is critical for reduc-
ing the detection error of the change points. We consider the
local prior, nonlocal moment prior and inverse moment prior,
respectively defined as follows:

πμ,L(μ) = N(0, ψ2),

πμ,M(μ) = μ2v

CM

1√
2π

exp(−μ2/2),

πμ,I(μ) = rφq/2

	(q/2r)
|μ|−(q+1) exp{−(μ2/φ)−r},

where v ≥ 1, ψ , r, q, φ > 0 and CM is the normalizing constant.
For the nuisance parameters ωs, we take πω(ωs) to be a Gamma
distribution.
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3.3. Posterior Distribution and Change Point Detection

Based on model (1), the marginal likelihood given a change
point set K can be written as

Pr(Y|K) =
p∏

s=0

∫ n∏
i=1

∫ ∏
k∈(κs,κs+1]

1
ωs

π0

(
Yik − Yi,κs − μis

ωs

)
πμ(μis)dμisπω(ωs)dωs. (3)

Using the prior in Equation (2), the posterior probability of K is

Pr(K|Y) ∝ Pr(Y|K)πk(K). (4)

The standard procedure to optimize the posterior is through
dynamic programming (Bellman and Roth 1969; Du, Kao, and
Kou 2016). However, because the dynamic programming eval-
uates the signals at every time point, the computation time
grows in the order of O(MT2) where M is the upper bound
of the number of change points (Rigaill 2015; Du, Kao, and
Kou 2016). When T is large, the computational burden is pro-
hibitive. To alleviate the computational burden, we propose a
screening procedure to reduce the search space of the change
points.

While we adopt a Bayesian mechanism for change point
detection, it is not a fully Bayesian approach. The prior is used
to induce penalties on the parameters so as to identify the best
set of change points. More specifically, by using a prior on K,
the algorithm induces a penalty on the locations and number
of change points. Hence, optimizing the posterior distribution
of K automatically provides the best estimates for the locations
and number of change points. Furthermore, the prior on the
mean difference induces a penalty on μis, which reduces the
false positive rate of detection.

3.4. Screening Candidate Points

Through the screening step, we can reduce the search space of
the change points to a subset of time points which is guaranteed
to cover the true change points asymptotically. This leads to a
substantial reduction in the computational time when there are
much fewer candidate points than the total measurement times
in the data.

Let Yik = m−1
I

∑k
l=k−mI+1 Yil, where mI is a prespecified

window size and the mI-neighborhood is defined as the set {Y l :
l ∈ (k − mI , k + mI)}. We construct a local scan statistic,

Rk =
n∏

i=1

∫ ∏k+mI
l=k+1 exp{−(Yil − Yik − μ)2}πμ(μ)dμ∏k+mI

l=k+1 exp{−(Yil − Yik)2}
. (5)

A large value of Rk favors the kth signal vector to be the only
change point in its mI-neighborhood. Thus, Rk → ∞ if k is a
true change point, and Rk → 0 if there is no change point in the
mI-neighborhood of the kth signal. Based on this property, we
develop Algorithm 1 for selecting the candidate points.

3.5. Change Point Detection With Candidate Points

Let H(mI) = {τ0, . . . , τN+1} be the set containing the candidate
points where {τi}N

i=1 are obtained by Algorithm 1 and τ0 = 0

Algorithm 1 Screening Candidate Points
(i) For each k ∈ [mI , T − mI], compute Rk.
(ii) If Rk = max{Rj, j ∈ (k − mI , k + mI)}, then k is selected as

a candidate point.

and τN+1 = T. Given K, we can define the utility function,
U(K|Y) = ∏p

s=0 u(Y(κs,κs+1], s), where

u(Y(κs ,κs+1], s) =
∫ n∏

i=1

∫ ∏
k∈(κs,κs+1]

1
ωs

π0(
Yik − Yiκs − μis

ωs

)
πμ(μis)dμisπω(ωs)dωs

× (α + sσ)

(s + 1)

∏Ns−1
i=1 (i − σ)

Ns! , (6)

and u(Y(κs,κs+1], s) can be regarded as the utility function for
segment Y(κs,κs+1].

The estimator for the set of change points is given by

K̂ = argmaxK⊆H(mI)U(K|Y).

To optimize U(K|Y) overH(mI) via dynamic programming, we
require that u(Y(κs,κs+1], s) only depends on {κs, κs+1, s} given
H(mI), so we replace Yi,κs in Equation (6) by Ỹi,κs = (τl −
τl−1)

−1 ∑
k∈(τl−1,τl] Yik with τl = κs, κs ∈ K. Note that Ỹi,κs is the

sample mean of the segment (τl−1, τl], while Yi,κs is the sample
mean of the segment (κs−1, κs]. Both are consistent estimators of
the mean of signals in the segment (κs−1, κs]. The dynamic pro-
gramming procedure is presented as Algorithm A.1 in the Sup-
plementary Materials, which has computational time O(MN2),
in comparison with O(MT2) of the existing algorithms (Rigaill
2015; Du, Kao, and Kou 2016).

4. Theoretical Properties

In this section, we present the theoretical properties of the BHM
method. Lemma 1 shows that H(mI) covers K0 with probability
one.

Lemma 1. Suppose that regularity conditions (1)–(2) in Section
C of the supplementary materials hold. Let η2

is be the variance of
Yik in the sth segment based on the true change points. Assume
m1/2

I δI/η → ∞, where η = max{i=1,...,n;s=0,...,p0} ηis, δI is
defined in condition (2) and mI/(log(T))1+ε → c > 0 for ε >

0. If min{i=0,...,p0}(κ0,i+1 − κ0,i) > mI , then for each κ0j ∈ K0,
there is a τ ∈ H(mI), such that Pr{κ0j ∈ (τ − mI , τ + mI)} → 1
as T → ∞.

The proof of Lemma 1 is given in Section C of the sup-
plementary materials. The condition mI/(log(T))1+ε → c >

0 regulates the selection of mI , which grows no slower than
log(T). Lemma 1 indicates that H(mI) should cover K0 asymp-
totically, while the cardinality of H(mI), N + 2, is far less
than T. Therefore, when performing the dynamic programming
on the smaller set H(mI), the algorithm guarantees a positive
probability to select the true change points and at the same time
improves the computational efficiency.
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Furthermore, Theorem 1 shows that the screening step
would accelerate the computational speed without sacrificing
the statistical consistency. Let K0 = {κ01, . . . , κ0p0} be the true
set of change points with min{i=0,...,p0}(κ0,i+1 − κ0,i) > mI , and
let K̂ = {κ̂1, . . . , κ̂p̂} be the estimated set of change points.

Theorem 1. Suppose that regularity conditions (1)–(4) in
Section C of the supplementary materials hold. Assume
m1/2

I δI/η → ∞ and mI/(log(T))1+ε → c > 0 for ε > 0,
and K0 is a subset of H(mI). Then, as T → ∞,

p̂ P−→ p0 and sup
b∈K0

inf
a∈K̂

|a − b| = Op (1) .

The proof of Theorem 1 is delineated in Section C of the sup-
plementary materials. Theorem 1 establishes the consistency of
the estimated change points when H(mI) covers K0. Combined
with the result in Lemma 1 that each true change point falls in
the mI-neighborhood of at least one candidate point, we have

p̂ P−→ p0 and sup
b∈K0

inf
a∈K̂

|a − b| = Op (mI) .

Hence, Lemma 1 and Theorem 1 imply that as T → ∞,
the estimated change points are guaranteed to fall in the mI-
neighborhood of the true change points.

5. Simulation Studies

5.1. Simulation Settings

We conduct simulation experiments to evaluate the properties
of the BHM method in comparison with two existing methods.
First, we introduce the two main assessment metrics: the over-
segmentation error,

d(K̂|K0) = sup
b∈K0

inf
a∈K̂

|a − b|,

and the under-segmentation error,

d(K0|K̂) = sup
b∈K̂

inf
a∈K0

|a − b|.

The over- or under-segmentation errors would be larger if we
select fewer or more change points than the truth, respectively.
The maximum segmentation error is max{d(K̂|K0), d(K0|K̂)},
and the estimation error for p0 is |p̂ − p0|.

The locations of change points are K0 = {�T × ri�}p0
i=1, with

p0 = 10 and

{ri}10
i=1 = {0.025, 0.155, 0.220, 0.365, 0.395, 0.495, 0.630,

0.725, 0.865, 0.975}.

We adopt n = 2 for parameter tuning and n = 8 for comparing
the BHM method with other methods. We define

g(i, k) =
[ {1 + sgn(k − κ0j)}(1 − I{j∈Ai})

2
, j = 1, . . . , p0

]
�,

i = 1, . . . , n; k = 1, . . . , T,

where Ai = {(3l + i) mod p0, l = 0, 1, 2}, sgn(·) is the sign
function and I{·} is the indicator function.

The data are generated with different dimensions from the
base model,

Yik = 2 + d�g(i, k) + ξik

1p0
�g(i,k)∏
j=1

vj,

i = 1, . . . , n; k = 1, . . . , T, (7)

where d = (2.5, −2.8, 2.4, 2.6, −3, −2.9, 3.1, −2.5, −2.7, 2.6)�
are the mean differences between consecutive segments, 1p0 is
a p0-dimensional vector of 1’s, ξik’s represent the errors and
[vj]p0

j=1 controls the homogeneity of the variances for different
segments. If [vj]p0

j=1 = 1p0 , the model yields a homogeneous
variance across the segments.

By selecting distinct [vj]p0
j=1 and different error distributions,

we can obtain different data-generating models. The models
used in the simulation studies are summarized as follows:

I. [vj]p0
j=1 = 1p0 and independent standard normal errors.

II. [vj]p0
j=1 = (0.6, 2, 2/3, 0.6, 2, 2/3, 0.6, 2, 2/3, 0.6) and inde-

pendent standard normal errors.
III. [vj]p0

j=1 = 1p0 and independent t(5) errors with unit vari-
ance.

IV. [vj]p0
j=1 = 1p0 and independent skewed normal errors with

slant parameter 4 and variance 1 (O’Hagan and Leonard
1976).

V. [vj]p0
j=1 = 1p0 and autocorrelated standard normal errors

under a moving average (MA) model, ξik = ak − 1.5ak−1
with ak ∼ N(0, 4/13).

VI. [vj]p0
j=1 = 1p0 and standard normal errors with correlated

sequences of correlation coefficient 0.3.

The top panel of Figure 3 presents the mean of the simulated
data under the base model (7) with T = 400 and n = 8. At some
change points, the mean shifts only happen in certain sequences
while the rest keep unchanged. For illustration, we also display
the simulated sequences under model I in the bottom panel of
Figure 3.

We choose α = 1, σ = 0.3 in the prior πk, as they yield the
smallest maximal segmentation errors under models I and II as
shown in Figure A.1 of the supplementary materials. We choose
πω to be Gamma(1, 1).

5.2. Tuning Parameters

We use the simulation to find a suitable window size mI for
our method. Lemma 1 indicates that mI should grow no slower
than log(T). Hence, we select mI = {

log (T)
}1.5 h, where h is

a constant to be determined numerically. Figure 4 exhibits the
relationship between h and |p̂ − p0|, and that between h and
the maximum segmentation error under models I and II with
T = 400 and n = 2, respectively. Clearly, h = 0.55 leads to the
overall smallest errors for both models. In general, BHM works
well for h ∈ [0.5, 0.6].

We also compare the performances of using different priors
for the mean difference under model I, including the normal
prior (πμ,L) with ψ = 2, moment prior (πμ,M) with v = 1 and
inverse moment prior (πμ,I) with q = φ = 2 and r = 0.6.
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Figure 3. The mean of the simulated data (top) and randomly generated data under model I (bottom) with sample size T = 400 and n = 8. The vertical dashed lines
indicate the true change points.

Figure 4. The absolute difference |p̂−p0| (left) and the maximum segmentation error (right) versus h over 500 simulations with sample size T = 400, n = 2 under models
I and II, respectively.

For fair comparisons, we select the best tuning parameters for
each prior, so as to achieve the lowest segmentation error under
model I, as shown in Figure A.2 (supplementary material).

Figure A.3 (supplementary material) shows the simulation
results under model I with n = 2, where both |p̂ − p0|

and the maximum segmentation error decrease as the sample
size increases. Further, the two nonlocal priors have similar
performances and both outperform the local prior by yield-
ing smaller errors, especially when the sample size is larger
than 350.
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Table 1. Comparison of BHM-FIX, BHM-MPP, ECP and DPMLE when n = 8 under the six data-generating models over 500 simulations.

Data-generating p̂ − p0 Segmentation error

Model Method ≤ −3 −2 −1 0 1 2 ≥ 3 d(K̂|K0) d(K0|K̂)

I BHM-FIX 0 0 0 500 0 0 0 0.14 (0.38) 0.14 (0.38)
BHM-MPP 0 0 0 500 0 0 0 0.08 (0.29) 0.08 (0.29)
ECP 0 0 0 471 26 3 0 0.18 (0.43) 1.10 (4.11)
DPMLE 500 0 0 0 0 0 0 78.32 (20.14) 0.08 (0.32)

II BHM-FIX 0 0 0 500 0 0 0 0.05 (0.23) 0.05 (0.23)
BHM-MPP 0 0 0 500 0 0 0 0.02 (0.15) 0.02 (0.13)
ECP 0 0 0 477 21 2 0 0.08 (0.29) 0.12 (0.35)
DPMLE 499 1 0 0 0 0 0 52.14 (1.97) 3.85 (0.36)

III BHM-FIX 0 0 0 500 0 0 0 0.17 (0.40) 0.17 (0.40)
BHM-MPP 0 0 0 500 0 0 0 0.11 (0.32) 0.11 (0.32)
ECP 0 0 0 469 28 3 0 0.20 (0.45) 1.20 (4.41)
DPMLE 500 0 0 0 0 0 0 72.02 (21.76) 0.12 (0.37)

IV BHM-FIX 0 0 0 500 0 0 0 0.10 (0.31) 0.11 (0.34)
BHM-MPP 0 0 0 500 0 0 0 0.10 (0.31) 0.09 (0.30)
ECP 0 0 0 474 22 4 0 0.15 (0.40) 0.20 (0.45)
DPMLE 500 0 0 0 0 0 0 75.60 (21.87) 5.80 (0.51)

V BHM-FIX 0 0 0 500 0 0 0 0.10 (0.32) 0.11 (0.32)
BHM-MPP 0 0 0 500 0 0 0 0.10 (0.27) 0.08 (0.27)
ECP 0 0 0 500 0 0 0 0.15 (0.38) 0.17 (0.38)
DPMLE 500 0 0 0 0 0 0 73.56 (21.39) 0.07 (0.26)

VI BHM-FIX 0 0 0 486 14 0 0 1.02 (1.65) 1.60 (3.86)
BHM-MPP 0 0 0 488 12 0 0 0.67 (0.83) 1.04 (2.57)
ECP 0 0 0 476 20 4 0 0.45 (0.64) 1.25 (3.86)
DPMLE 500 0 0 0 0 0 0 77.70 (22.67) 0.10 (0.31)

Note: Standard deviations are given in parentheses.

5.3. Comparison With Other Methods

We compare BHM with the ECP and DPMLE mean-change
detection methods under all the six data-generating models with
sample size T = 400 and n = 8. For the ECP and DPMLE meth-
ods, we adopt the default parameters from the original articles,
respectively. The BHM method uses a normal likelihood for all
models except for model III where a t-distribution likelihood is
used. The moment prior πμ,M is chosen for mean differences
according to the results in Figure A.3. We adopt two methods to
select parameters (α, σ , v, h), as they are essential for BHM. (i)
We set (α, σ , v, h) = (1, 0.3, 1, 0.55) as they deliver satisfactory
performances in the simulation studies (denoted as BHM-FIX).
(ii) We tune parameters (α, σ , v, h) to maximize the posterior
probability Pr(K|Y) (denoted as BHM-MPP). Table 1 shows
the results for n = 8 under the six models. The BHM-MPP
consistently outperforms BHM-FIX under all the six models,
indicating that maximization of the posterior probability is a
more effective method to select hyper-parameters for the BHM
method in practice. Nevertheless, the performance of BHM-
FIX is only slightly inferior to that of BHM-MPP under all six
settings, suggesting that the selected parameters in Section 5.2
achieve high estimation accuracy with small |̂p − p0| and seg-
mentation errors. In practice, (v, h) = (1, 0.55) can be set as the
default parameters while the values of (α, σ) should be selected
via the prior belief on the number of change points or the MPP
method, as they rely on the number and locations of change
points.

Overall, the proposed BHM-FIX and BHM-MPP are supe-
rior to other methods by yielding the smallest |̂p − p0| and seg-
mentation errors under all the six models. Although incorrect
models are adopted under models IV, V, and VI, the BHM-
FIX and BHM-MPP still perform better than the competitive
methods due to the robustness property.

6. Wind Turbine Data

For illustration, we apply our BHM method to detect the
changes in the wind turbine data available from a wind turbine
anomaly detection contest. For the details of the contest,
refer to the link http://www.caict.ac.cn/kxyj/qwfb/bps/201804/
t20180426_158519.htm). It includes a total of seven datasets
which are manually labeled for the wind turbine failure times
serving as the ground truth. Each dataset contains eight
sequences (n = 8), corresponding to wind speed, cabin
temperature, environment temperature, accelerated speed along
horizontal and vertical directions and the ng5 temperatures
from three pitches. In each dataset, there are 4–8 change
points, that is, p0 ∈ [4, 8] in the sequences. The lengths of the
sequences are from 400 to 1000, that is, T ∈ [400, 1000]. Under
the moment prior, we choose (α, σ , v, h) to yield the largest
posterior probability Pr(K|Y) under the BHM-MPP. We first
use an outlier detection method introduced in Section A.3 of
the supplementary materials to evaluate the data distribution.
As there are significant amount of outliers in the data and
thus the normal likelihood may not fit the data well, we adopt
the t distribution to construct the likelihood in the BHM
method. For comparison, we also implement other mean-
change point detection methods, including ECP and DPMLE,
and the popular pattern detection method called AutoPlait
(Matsubara, Sakurai, and Faloutsos 2014).

We use three metrics to compare different methods,
while considering an estimator within (or outside) the mI-
neighbourhood of a true change point as a true positive (or
false positive) detection.

1. Precision (P): proportion of the estimated change points that
are true change points. If the method yields no estimated
change point, the precision is defined as 0.

http://www.caict.ac.cn/kxyj/qwfb/bps/201804/t20180426_158519.htm
http://www.caict.ac.cn/kxyj/qwfb/bps/201804/t20180426_158519.htm
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Table 2. The running times based on the Intel core i7-7700K CPU and detection results of BHM-MPP, ECP, DPMLE and AutoPlait on seven wind turbine datasets, and the
overall results are the average of those for the seven datasets.

Metrics BHM-MPP ECP DPMLE AutoPlait BHM-MPP ECP DPMLE AutoPlait

Dataset 1 Dataset 2
Time (sec) 161.1 21.9 435.2 2.8 32.9 6.3 58.6 1.2
Precision 0.625 0.316 0 0 0.500 0.300 0 1.000
Recall 0.833 1.000 0 0 0.750 0.750 0 0.250
F1 score 0.715 0.480 0 0 0.600 0.429 0 0.400

Dataset 3 Dataset 4
Time (sec) 31.2 5.2 58.6 2.2 28.2 7.2 58.7 1.8
Precision 0.429 0.300 0.444 1.000 0.333 0.214 0 0
Recall 0.750 0.750 1.000 0.250 0.750 0.750 0 0
F1 score 0.545 0.429 0.615 0.400 0.462 0.333 0 0

Dataset 5 Dataset 6
Time (sec) 70.3 13.3 156.2 2.8 30.3 5.8 58.8 2.6
Precision 0.375 0.176 0 0 0.875 0.667 0.727 0
Recall 0.750 0.750 0 0 0.875 1.000 1.000 0
F1 score 0.500 0.286 0 0 0.875 0.800 0.842 0

Dataset 7 Overall
Time (sec) 15.8 2.0 13.0 1.4 52.8 8.8 119.9 2.1
Precision 0.429 0.375 0.429 0 0.509 0.322 0.441 0.500
Recall 0.750 0.750 0.750 0 0.794 0.853 0.441 0.059
F1 score 0.545 0.500 0.545 0 0.620 0.468 0.441 0.105

Figure 5. Detection results of the BHM-MPP method for the wind turbine dataset 1 with n = 8 sequences. The black dashed lines are the estimated state shift points and
the red shadows are the mI-neighborhood of the ground truth.

2. Recall (R): proportion of true change points detected by an
algorithm.

3. F1 score: F1 = 2RP/(R + P). When R = P = 0, the F1 score
is defined as 0.

Table 2 shows the results from the BHM-MPP, ECP, DPMLE,
AutoPlait methods on the seven datasets. Among the four meth-
ods, BHM-MPP yields the best performance in five out of seven
datasets (i.e., datasets 1, 2, 4, 5, and 6) in terms of the F1 score.
ECP yields a competitive recall but a much lower precision;
DPMLE does not provide satisfactory precision or recall, espe-
cially for datasets 1, 2, 4, and 5, where the algorithm misses all
the change points; AutoPlait barely captures any true change
points in all the datasets. Figure 5 shows the eight data sequences
of the wind turbine dataset 1 and the detection results using
the BHM-MPP method. Compared with the results of other
methods in Figure 2, the BHM-MPP method clearly yields the
best performance.

We also report the running time of the four methods for each
dataset based on the Intel core i7-7700k CPU in Table 2. While
the AutoPlait leads to unsatisfactory performance, it consumes
the shortest running time. Among the three mean-change detec-
tion methods, the nonparametric ECP is fastest. Due to the

dynamic programming procedure, the computational burden
of the BHM and DMPLE is relatively heavier, requiring longer
computational time compared to the other two methods. How-
ever, it is worth noting that all AutoPlait, ECP, and DPMLE are
implemented with C/C++ languages while our BHM method is
implemented with the R language.

7. Conclusion

Motivated by the wind turbine data, we propose a BHM-
based algorithm to detect mean changes for multivariate
data sequences. Our method borrows the information across
different sequences using the exchangeable random order prior.
Furthermore, BHM reduces the detection errors by applying
the nonlocal priors to the mean difference. It also eases the
computational burden by employing an initial screening stage
for selecting the candidate points. We show the asymptotic
consistency of the proposed method from both theoretical and
numerical perspectives. As an illustration, we apply the BHM
method to detect the anomalies in the wind turbine data where
the BHM method shows robust outcomes and yields the best
performance in most of the datasets in terms of the F1 score
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compared with other competitive methods considered in the
article.

Supplementary Materials

PDF file containing additional simulation results, the dynamic pro-
gramming algorithm as well as the proofs of Lemma 1 and Theorem 1.
RCode_and_data: Zip file containing the R code for implementing the
BHM method as well as the real data used in the article in RData form.
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