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A Simulation Details

A.1 Compared designs for phase I trials

The detailed settings of the BOIN (Liu and Yuan, 2015) and CRM (O’Quigley et al., 1990)

used in the simulation studies are described as follows.

e BOIN: Following Lin and Yin (2017b) and Liu and Yuan (2015), we set ¢; = 0.6¢
and ¢o = 1.4¢. We eliminate dose level k and all dose levels above from the trial
if Pr(pr > é|zg, mp > 3) > 0.95. If the posterior probability of the first dose level

satisfies Pr(p; > ¢|x1, m; > 3) > 0.95, then we terminate the entire trial for safety.

e CRM: We adopt the power model p; = W?Xp(a) with the model skeleton selected by the
method of Lee and Cheung (2009). We choose an initial guess of the MTD at dose level
| K /2] while the halfwidth of the indifference interval is set as 0.05 following Lin and Yin

(2017b, 2018). The early stopping rule terminates the trial if Pr(p; > ¢|data) > 0.95.

A.2 Compared deigns for phase I/II trials

The detailed settings of the STEIN (Lin and Yin, 2017a), MADA (Xu et al., 2016) and WT

(Wages and Tait, 2015) methods used in the simulation studies are described as follows.

e STEIN: Following Section 2.4 of Lin and Yin (2017a), we use ¢; = 0.75¢ and ¢y =
1.25¢. For the efficacy rates, we set 1 = 1) = 0.3 and ¥, = 0.65. For a fair comparison,
the utility function is defined as U(py, qx) = qx — 1001 (px, > ¢) for k = 1,..., K, where

I(-) is the indicator function.



e MADA: We use (07,0r,0y) = (0.95,0.4,0.7) and there are 24 subjects for the first

stage (Xu et al., 2016).

e WT: Following Wages and Tait (2015), the sample size for the adaptive randomization
phase is 25% of the total sample size. The prior model skeletons for the dose—efficacy
relationship adopt the skeletons in Section 4.1 of Wages and Tait (2015). The prior

skeleton for the dose—toxicity relationship follows the CRM setting in Section A.1.

B Random Scenario Generation

B.1 Scheme for phase I trials

We generate random scenarios to assess the performance of the phase I designs in Sections

3.1 and 3.2 following Paoletti et al. (2004). Specifically, the procedure is detailed as follows.

1. We randomly select, with equal probabilities, one of the K dose levels as the MTD and

denote that dose level as kyrp.

2. Let ® be the cumulative density function (CDF) of the standard normal distribution.
The probability of the MTD is pg,rp = ®(emrp) With eyrrp ~ N(®71(9), 03), where ¢

is the target toxicity probability.
3. For {pk}],?:’lf‘)_l, we generate
Pre1 =@ [@7 (p) = {7 () = D7 (20 — i) F T{O7 (1) > D7)} — €ia]
where I(-) is the indicator function and €;_; ~ N (1, 0%).
4. For {pi iy ons1, WE generate

Pyt =@ [ (pr) + {720 —pr) = D7 (pa) } T{P 7 (mr) < @)} + 1]

where €1 ~ N(us,03).



Following Liu and Yuan (2015), we choose oy = 0.05 and 0; = 09 = 0.35, and tune the
parameters p; = ps to achieve the desirable A, i.e., the average probability difference around

the target.

B.2 Scheme for phase I/II trials

As there is no monotone assumption on {g,}X ,, we divide the dose-efficacy curve into
two types, the plateau-shape curve and the umbrella-shape curve. The monotone increasing
curve is a special case of the plateau-shape or umbrella-shape curve when the highest efficacy
rate is achieved at dose level K.

The detailed procedure to generate the scenarios for phase I/II trials is described as

follows.

1. We randomly select, with equal probabilities, one of the K dose levels as the OBD and

denote that dose level as kopp.

2. We randomly select, with equal probabilities, one dose level as the MTD from {kopp, kosp+

1,..., K} and denote that dose level as kyp.
3. Given kyrp, we generate the DLT rates {p;, }*_, following the procedure in Section B.1.

4. Let v and ¥y be the lowest acceptable efficacy rate and the upper bound of the
efficacy rate, we generate gopp ~ Uniform(¢,1y). We choose 1y = 0.7 throughout

our experiments.

5. To generate plateau-shape curves, we first generate kogp—1 values from Uniform(0, gopp),

and then sort them in an ascending order to obtain {qk}igﬁD_l. For k = kosp +

1,...,K, we let dx = JOBD-

6. To generate umbrella-shape curves, we first generate kopp—1 values from Uniform(0, gopp),

and then sort them in an ascending order to obtain {qk}z‘;‘i‘)_l. Similarly, we generate



K — kopp values from Uniform(0, gopp), and then sort them in a descending order to

obtain {qx}r. ot

C Additional simulation results for toxicity evaluation

C.1 Toxicity evaluation by ANOVA

As determination of the MTD is an essential part of the CFO design, we conduct extensive
simulation studies in the context of identifying the MTD. For comparison, we also imple-
ment the CRM (O’Quigley et al., 1990) and Bayesian optimal interval design (BOIN) (Liu
and Yuan, 2015) to assess their operating characteristics for monitoring toxicity only. The
detailed settings of the compared designs are given in Section A.1.

We first investigate the influential factors that affect the result of the dose-finding trial in
terms of the percentage of MTD selection via the analysis of variance (ANOVA) method used
by Cangul et al. (2009). To avoid cherry-picking cases, we randomly generate dose—toxicity
scenarios following the approach of Paoletti et al. (2004). The major factors affecting the
result of the phase I trial are listed in Table A.1, which shows a total of 3x2x4 x4 x4 = 384
factorial settings, and under each cell we compare the BOIN, CFO and CRM designs via
1000 randomly generated scenarios.

After obtaining the percentage of MTD selection for each cell in the factorial design, we
perform ANOVA with regard to these percentages using the simulation factors including all
the pairwise interactions in Table A.1. The factors are ordered by the mean squared error
(MSE) in the ANOVA, and the three most influential factors on the MTD selection are the
average probability difference around the target ¢, the sample size, and the number of dose
levels K. These three factors account for 89.7% of the MTD selection percentage variance.
As expected, the statistical design has rather minor influence on the MTD selection. In
practice, a real trial would be conducted only once and thus it is of paramount importance

to apply the most suitable design to pin down the MTD accurately.



The percentage of MTD selection and the percentage of patients treated at the MTD
across the three main factors are reported in Table A.2. We also present the percentage
of overdose selection and the percentage of patients treated at the over-toxic doses across
the same factors in Table A.3. The four metrics under the CFO, BOIN and CRM designs
vary dramatically when the three dominant factors change. The CRM has an overall highest
percentage of MTD selection in comparison with the other two methods. It is because the
CRM design is a model-based approach that can borrow information across all doses, while
the other two methods can only utilize local information for dose escalation. The CFO
design shows a slightly higher percentage of MTD selection compared with BOIN, while
in term of the percentage of the MTD allocation, the CFO and CRM designs have similar
performances and both are better than BOIN. For the two safety measures, CFO yields the
best performance and CRM is clearly worse than the other two methods. Such a trade-off
is common in the dose-finding task, when a method tends to be more efficient by exploring
more untried and potentially risky doses, it would typically sacrifice on the safety aspect.
As a summary based on the results, the CFO design strikes a balance between efficiency and

safety.



Table A.1: Simulation factors affecting the dose-finding performance of the phase I trial
and the results of ANOVA in terms of the percentage of MTD selection. The ANOVA also
includes all the pairwise interactions between the simulation factors.

Factor Levels of factor DF MSE
Average probability difference around ¢ {0.05,0.07,0.10,0.15} 3  3.558
Sample size {21, 30, 48,60} 3 0.467
Number of dose levels K {3,5,7,9} 3 0.203
Statistical design {BOIN, CFO, CRM} 2 0.122
Target toxicity probability ¢ {0.25,0.30,0.33} 2 0.076
Cohort size {1,3} 1 0.007

DF': degree of freedom; MSE: mean squared error

Table A.2: The percentage of MTD selection (the percentage of patients treated at the MTD)
under the CFO, BOIN and CRM designs across the three dominant factors: the probability
difference around ¢, sample size, and number of doses.

Design Factor Level

Prob diff (¢) 0.05 0.07 0.10 0.15 Average
CFO 36.0 (31.6) 43.1 (36.6) 51.2 (42.7) 62.1 (51.0) 48.1 (40.5)
BOIN 36.0 (31.1) 43.1 (35.6) 50.7 (40.6) 61.0 (47.4) 47.7 (38.7)
CRM 38.2 (32.8) 46.1 (38.0) 54.7 (43.9) 64.9 (51.3) 51.0 (41.5)
Sample size 21 30 48 60

CFO 43.2 (34.6) 47.1 (38.5) 50.4 (43.4) 51.6 (45.6) 48.1 (40.5)
BOIN 43.0 (33.3) 47.1 (36.7) 49.9 (41.5) 50.6 (43.2) 47.7 (38.7)
CRM 45.0 (34.7) 48.9 (38.9) 54.1 (44.9) 55.8 (47.4) 51.0 (41.5)
Number of doses 3 5) 7 9

CFO 52.4 (50.4) 48.6 (41.6) 46.4 (36.6) 45.0 (33.4) 48.1 (40.5)
BOIN 51.2 (48.8) 48.3 (39.8) 46.6 (34.8) 44.6 (31.3) 47.7 (38.7)
CRM 53.5 (51.2) 51.4 (42.6) 50.0 (37.8) 48.9 (34.4) 51.0 (41.5)




Table A.3: The percentage of overdose selection (the percentage of patients treated at over-
toxic doses) under the CFO, BOIN and CRM designs across the three factors: the probability
difference around ¢, sample size, and number of doses.

Design Factor Level

Prob diff (¢) 0.05 0.07 0.10 0.15 Average
CFO 19.3 (19.0) 17.6 (18.2) 14.7 (16.5) 10.4 (13.7) 15.5 (16.8)
BOIN 20.3 (20.2) 17.9(19.0) 15.1 (17.3) 10.1 (14.4) 15.8 (17.7)
CRM 21.7 (21.3) 204 (20.6) 18.4 (19.4) 14.5(16.9) 18.7 (19.6)
Sample size 21 30 48 60

CFO 16.8 (16.4) 16.3 (17.0) 15.1 (17.3) 13.8 (16.7) 15.5 (16.8)
BOIN 17.3 (17.4) 17.0 (18.2) 15.1 (17.9) 14.0 (17.5) 15.8 (17.7)
CRM 22.3 (19.2) 19.0 (20.0) 16.9 (19.7) 16.1 (19.4) 18.7 (19.6)
Number of doses 3 5 7 9

CFO 15.5 (18.4) 15.8 (17.6) 15.6 (16.2) 15.2 (15.2) 15.5 (16.8)
BOIN 15.3 (19.0) 16.1 (18.7) 16.0 (17.2) 15.9 (16.2) 15.8 (17.7)
CRM 17.1 (19.9) 18.7(20.3) 19.3 (19.5) 19.9 (18.5) 18.7 (19.6)




C.2 CRM results under the optimal halfwidth

In our simulation studies, we choose the halfwidth of the CRM design as 0.05 consistently
following Lin and Yin (2017b, 2018). In fact, we also try to select the optimal halfwidth
for each setting based on the algorithm of Lee and Cheung (2009). However, as shown in
Table A.4, the optimal halfwidth does not yield better results compared with those by fixing
the halfwidth at 0.05. Thus, we fix the halfwidth at 0.05 throughout the simulation studies

for simplicity and consistency.

Table A.4: The overall results of the CRM when the halfwidth is fixed as 0.05 and when the
optimal halfwidth is selected by the method of Lee and Cheung (2009) in ANOVA.

MTD Selection MTD Allocation Overdose Selection Overdose Allocation

CRM (optimal) 50.4 40.8 20.4 21.1
CRM (0.05) 51.0 415 18.7 19.6

C.3 Implementation of CFO at the beginning of a trial

In Table A.5, we show the design statistics at the beginning of a trial when the cohort size
is 1 and ¢ = 0.3. If the cohort size is 3, the table is very long to enumerate all the possible

outcomes.



Table A.5: The design statistics when CFO is implemented at the beginning of a trial.

(zr,zc,2r) (Oc/O,0c¢/OR) A (yr,yo,yr)  (Pr(gr = max;—4{q;}))x
(mL, mc, mR) = (NA, 1, 0), (’)/L,’}/R) = (I\LA7 0003)

(NA, 0,0) (NA,1.546) (1,2} (NA,0,0) (0.296, 0.704)
(NA, 1,0) (0.710,0.290)
(NA, 1,0) (NA, 0.003) {1} (NA,0,0) (1)
(NA, 1,0) (1)
(mp,me,mg) = (1,1,0), (vz,7r) = (0.048,0.003)
0,0,0) (0.048,1.546)  {1,2,3}  (0,0,0) (0.217,0.202, 0.581)
(0,1,0) (0.056,0.670,0.274)
0,1,0) (6.244,0.003) (1} 0,0,0) (1)
(0,1,0) (1)
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