
Supporting information for “Approximate Bayesian

Computation Design for Phase I Clinical Trials”

by Huaqing Jin, Wenbin Du and Guosheng Yin

A Simulation Details

A.1 Detailed settings of compared methods

The detailed settings of the BOIN, CCD, CRM, keyboard, mTPI and UMPBI methods used

in the simulation studies are listed as follows.

• BOIN: In the BOIN design, we choose ϕ1 = 0.6ϕ and ϕ2 = 1.4ϕ. Such setting follows

Lin and Yin (2017) and Liu and Yuan (2015).

• CCD: Following Ivanova et al. (2007), we set the tolerance interval of the CCD method

as (0.2, 0.4) when ϕ = 0.3 and (ϕ− 0.09, ϕ+ 0.09) when ϕ < 0.3.

• CRM: we adopt the power model pj = π
exp(α)
j with the model skeleton selected by the

method of Lee and Cheung (2009). We choose a halfwidth of the indifference interval

of 0.05 and an initial guess of MTD at dose level ⌈K/2⌉. Note that such choices are

popular in the literature (Lin and Yin, 2017, 2018).

• Keyboard: Following Yan et al. (2017), we set the proper dosing interval as (ϕ −

0.05, ϕ+ 0.05) for the keyboard design.

• mTPI: Following the discussion in Ji et al. (2010), we choose the equivalent interval

as (ϕ− 0.05, ϕ+ 0.05).

• UMPBI: Following Lin and Yin (2018), the threshold parameter, i.e., the only tuning

parameter, is selected as γ(mk) = exp
(
c
√
mk

)
, with c = log(1.1)/3.
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For the real data application, we follow the original paper (Banerjee et al., 2017) and use

the CRM design with a 2-parameter logistic model, i.e.,

logit(pj) = α + exp(β)xi,

where the model skeleton is still selected by the method of Lee and Cheung (2009) with a

halfwidth of the indifference interval of 0.05 and an initial guess of MTD at dose level ⌈K/2⌉.

The early stopping rule is set as terminating the trial if Pr(p1 > ϕ|data) > 0.95.

A.2 Random Scenario Generation

We generate random scenarios to assess the performance of the phase I designs in Sections

3.1 and 3.2 with the method of Paoletti et al. (2004). Specifically, the procedure is detailed

as follows.

1. Randomly select, with equal probabilities, one of the K dose levels as the MTD and

denote that dose level as k̃.

2. Let Φ be the cumulative density function (CDF) of the standard normal distribution.

The probability of the MTD is pk̃ = Φ(ϵk̃) with ϵk̃ ∼ N(Φ−1(ϕ), σ2
0), where ϕ is the

target toxicity probability.

3. For {pk}k̃−1
k=1, generate

pk−1 = Φ
[
Φ−1(pk)−

{
Φ−1(pk)− Φ−1(2ϕ− pk)

}
I
{
Φ−1(pk) > Φ−1(ϕ)

}
− ϵ2k−1

]
,

where I(·) is the indicator function and ϵk−1 ∼ N(µ1, σ
2
1).

4. For {pk}Kk=k̃+1
, generate

pk+1 = Φ
[
Φ−1(pk) +

{
Φ−1(2ϕ− pk)− Φ−1(pk)

}
I
{
Φ−1(pk) < Φ−1(ϕ)

}
+ ϵ2k+1

]
,

where ϵk+1 ∼ N(µ2, σ
2
2).
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Following Liu and Yuan (2015), we choose σ0 = 0.05 and σ1 = σ2 = 0.35, and tune the

parameters µ1 = µ2 to achieve desirable ∆, i.e., the average probability difference around

the target.

B Toy example for the monotonically constrained sam-

pling

For illustration of the monotonically constrained sampling problem, we show an example on

how to sample three variables {Xi}3i=1 whose base distribution is Uniform(0, 1) but with the

constraint 0 < X1 < X2 < X3 < 1.

Proposition 1. The probability density function (pdf) of the joint uniform distribution of

(X1, X2, X3) under the constraint 0 < X1 < X2 < X3 < 1 is

f(x1, x2, x3) = f1(x1|x2)f2(x2)f3(x3|x2), (B.1)

where

f2(x2) ∼ Beta(2, 2), f1(x1|x2) ∼ Uniform(0, x2), f3(x3|x2) ∼ Uniform(x2, 1).

Proof: By definition, the pdf of (X1, X2, X3) can be written as

f(x1, x2, x3) = CI{0<x1<x2<x3<1},

where C is a constant and I is an indicator function. Noting that the joint pdf can be

rewritten as

f(x1, x2, x3) = CI{0<x1<1}I{0<x2<1}I{0<x3<1}I{x1<x2}I{x2<x3},
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the marginal distribution of X2 is obtained by

f2(x2) =

∫ ∫
f(x1, x2, x3) dx1 dx3

=

∫
CI{0≤x3≤1}I{0≤x2≤1}I{x2<x3}

∫
I{x1<x2}I{0≤x1≤1} dx1 dx3

=

∫
Cx2I{0≤x3≤1}I{0≤x2≤1}I{x2<x3} dx3

= C(1− x2)x2I{0≤x2≤1}

= 6(1− x2)x2I{0≤x2≤1},

which corresponds to the pdf of Beta(2, 2). The conditional density of (X1, X3) given X2 is

f(x1, x3|x2) =
f(x1, x2, x3)

f2(x2)
=

I{0≤x1≤x2}I{x2≤x3≤1}

(1− x2)x2

= f1(x1|x2)f3(x3|x2),

because given X2, X1 and X3 are independent, and thus each follows a uniform distribution.

We explore four ways to sample (X1, X2, X3) under the monotonicity constraint.

• Method 1: sample (X1, X2, X3) following the distributions in (B.1).

• Method 2: sample three variates from Uniform(0, 1) independently, and then sort

them in an ascending order and label the sorted samples as X1, X2, X3.

• Method 3: sample X1, X2, X3 ∼ Uniform(0, 1) independently and only keep the

samples satisfying X1 < X2 < X3.

• Method 4: sample (X1, X2, X3) as follows,

X2 ∼ Uniform(0, 1),

X1|X2 ∼ Uniform(0, X2),

X3|X2 ∼ Uniform(X2, 1).

The estimated densities of (X1, X2, X3) under the four sampling methods are shown in Fig-

ure A.1. Clearly, the first three sampling methods lead to equivalent distributions while
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Figure A.1: The densities of X1 (left), X2 (middle) and X3 (right) under the four different
sampling methods.

the last one yields a different one. Method 1 requires tedious derivations which would be

more complicated if more random variables are involved. Method 2 is natural and simple to

incorporate the monotonicity constraint, and Method 3 is less efficient.

C The selection of S(·, ·)

In Section Optimal Dose Selection, after we obtain the weighted samples, we need to select

a suitable function S(·, ·) to yield reasonable estimators of p̂n,k’s . The common choices are

among weighted mean, weighted median and weighted mode functions.

In Figure A.2, we present the typical density function of the posterior weighted samples.

It is clear that the density function is not uni-modal, and therefore the weighted mode

function is not suitable in this case.

We also compared the performance of the three choices when the target DLT rate is

ϕ = 0.2 and the number of dose levels is 5 under 5000 randomly generated scenarios. The

results are presented in Table A.1.

The results indicate that the weighted mode function is not a satisfactory choice for our

ABC design. Both the weighted median and weighted mean function yield decent perfor-
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Figure A.2: The kernel density estimate of the posterior weighted samples from the ABC
design.

Table A.1: Simulation results with sample size 30 based on 5000 randomly generated dose–
toxicity scenarios under the average probability difference of ∆ = 0.1 around the target
toxicity probability ϕ = 0.2 with 5 dose levels.

MTD sel. (%) MTD allo. (%) Overdose sel. (%) Overdose allo. (%)

ABC-mean 54.58 41.24 14.32 17.02
ABC-median 56.56 42.21 16.68 18.29
ABC-mode 50.30 38.90 19.00 17.81
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mance. The ABC design with weighted median function is more efficient while the ABC

design with weighted mean function is safer. In our paper, we adopt the weighted median

over the weighted mean because the median is more robust compared with the mean.
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