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Dynamic resting state functional connectivity (RSFC) characterizes fluctuations that occur over time in functional
brain networks. Existing methods to extract dynamic RSFCs, such as sliding-window and clustering methods that
are inherently non-adaptive, have various limitations such as high-dimensionality, an inability to reconstruct
brain signals, insufficiency of data for reliable estimation, insensitivity to rapid changes in dynamics, and a lack
of generalizability across multiply functional imaging modalities. To overcome these deficiencies, we develop a
novel and unifying time-varying dynamic network (TVDN) framework for examining dynamic resting state func-
tional connectivity. TVDN includes a generative model that describes the relation between a low-dimensional
dynamic RSFC and the brain signals, and an inference algorithm that automatically and adaptively learns the
low-dimensional manifold of dynamic RSFC and detects dynamic state transitions in data. TVDN is applicable
to multiple modalities of functional neuroimaging such as fMRI and MEG/EEG. The estimated low-dimensional
dynamic RSFCs manifold directly links to the frequency content of brain signals. Hence we can evaluate TVDN
performance by examining whether learnt features can reconstruct observed brain signals. We conduct compre-
hensive simulations to evaluate TVDN under hypothetical settings. We then demonstrate the application of TVDN
with real fMRI and MEG data, and compare the results with existing benchmarks. Results demonstrate that TVDN
is able to correctly capture the dynamics of brain activity and more robustly detect brain state switching both in
resting state fMRI and MEG data.

1. Introduction

The human brain’s functional activity can be described as highly dy-
namic functional networks arising from a structural network whose fluc-
tuations over time form the basis for complex cognitive functions and
consciousness (Bassett et al., 2011; Deco and Jirsa, 2012; Duan et al.,
2020; Liu et al., 2022; 2022; Pasquini et al., 2020; Shine et al., 2015).
This view of brain function highlights the importance of time sensitive
descriptions of brain network activity for understanding the functional
relevance of alterations in the network function that may underlie dif-
ferent behavioral states and conditions(Varela et al., 2001). Recent ex-
periments using fMRI data have demonstrated that global brain signals
transition between states of high and low connectivity strength over
time (Zalesky et al., 2014) and these fluctuations are related to coordi-
nated patterns of network topology (Betzel et al., 2016). Studies suggest
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that dynamic fluctuations in the network structure also relate to fluctu-
ations in the cognitive function (Shine et al., 2015). Therefore, analyses
of functional neuroimaging data to examine time-varying reconfigura-
tion of the global network structure may provide a unique opportunity
to gain insights into the dynamics of functional brain networks, their
association with behavioral states, and their alterations in disease and
therapeutic interventions.

To appropriately describe synchronous temporal fluctuations in neu-
roimaging data, many data driven approaches have been used, espe-
cially with the resting state functional connectivity (RSFC) which de-
scribes how brain activity is correlated across regions when an ex-
plicit task is not being performed. Many studies have shown that this
functional connectivity provides a powerful and informative framework
for exploring brain organization (Bullmore and Sporns, 2009; Greicius,
2008; Shine et al., 2015). RSFC studies have been described both for
blood-oxygen level-dependent (BOLD) data measured with functional
magnetic resonance imaging (fMRI) (Biswal et al., 1997; Calhoun et al.,
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2001; Greicius et al., 2003) and for faster time scale neural oscilla-
tory network changes measured with magnetoencephalography (MEG)
(Englot et al., 2015; Ranasinghe et al., 2017) or electroencephalog-
raphy (EEG) imaging (Brookes et al., 2011; Dominguez et al., 2013;
Hohlefeld et al., 2013). Approaches for RSFC analyses include seed-
based correlations (Lv et al., 2018), independent component analysis
(Beckmann et al., 2005) and dynamic mode decomposition (Brunton
et al., 2016; Kutz et al., 2016). Recent work has also focused on re-
covering the static RSFC from the underlying structural connectivity
via graph methods like the network diffusion model (Abdelnour et al.,
2014) and algebraic spectral graph expansions (Abdelnour et al., 2018;
Becker et al., 2018; Meier et al., 2016; Tewarie et al., 2020). of dynamic
changes in functional network architecture. To date, most existing sta-
tistical techniques for RSFC have assumed that the functional connec-
tivity structure is stationary over a dataset, which is in direct contrast to
emerging data that suggest the strength of connectivity between regions
is variable over time. Therefore, the development of statistical methods
that enable exploration of dynamic changes in the functional connectiv-
ity is currently of great importance to the neuroscience community.
The extension of current techniques to capture the dynamic changes
in RSFC during the scan period is a lively yet evolving topic. It is well
known that the brain at rest is in fact quite dynamic, with RSFC capable
of changing over a matter of seconds to minutes (Hutchison et al., 2013).
This time varying pattern, namely the dynamic functional connectivity,
has been shown to constitute novel imaging biomarkers for identify-
ing neurological dysfunctions such as schizophrenia, autism and vari-
ous forms of dementia (Damaraju et al., 2014; Filippi et al., 2019; Long
et al., 2020; Ma et al., 2014; Mash et al., 2019; Pasquini et al., 2020;
Rashid et al., 2016; 2014; Schumacher et al., 2019). For instance, dy-
namic FC may underlie the neuropathology of major depressive disorder
(Long et al., 2020), can assess the abnormal brain states for schizophre-
nia (Duan et al., 2020) and it can identify early mild cognitive impair-
ment for dementia (Wee et al., 2016) and distinguish Alzheimer’s Dis-
ease (AD) patients from healthy controls (Schumacher et al., 2019).
Thus, the dynamic component of RSFC may serve as an additional
biomarker of neurological disorders - a key motivation of current work.
Currently, the most common approach to extract dynamic RSFCs
relies on the sliding-window method, which generally consists of two
steps: (1) divide signals into segments of the equal duration; (2) imple-
ment the traditional seed based method (Biswal et al., 1995; Fox et al.,
2005), independent component analysis (Allen et al., 2014; Calhoun
et al., 2001; van de Ven et al., 2004), or the dynamic mode decompo-
sition method (Brunton et al., 2016; Kutz et al., 2016) on the segments
sequentially. While the sliding-window method is practically attractive
since it enables the use of earlier static methods in the dynamic context,
it presents several limitations and trade-offs, which will be discussed in
detail in Section 4.1. One notable issue is that current methods for dy-
namic functional connectivity (FC) analysis do not account for biological
constraints or biophysically realistic models of brain activity and state
switches. This represents a lost opportunity to overcome some of the lim-
itations noted in Section 4.1. Here we propose a novel model for extract-
ing dynamic FC that relies on discrete and discontinuous “state changes”
in brain activity. Indeed, there is mounting evidence that the brain’s dy-
namics results from its cycling through a number of brain-states, i.e., the
transient, patterned, quasi-stable states or patterns of the brain activity
(Coquelet et al., 2021; Croce et al., 2020; Michel and Koenig, 2018),
separated by brain state switches, such that while the FC during brain
states may be considered stationary, FC during the transitions between
brain states are subject to discontinuous, abrupt or non-smooth events
(Li et al., 2013; Saper et al., 2010; Vidaurre et al., 2017). In addition
to being more biologically realistic, this approach allows us to benefit
from several constraints, especially the concept that the spatial features
of brain activity might be stationary, while the coupling between these
stationary structures might be temporally dynamic. For instance, the
spatial structures may arise from the underlying structural connectivity,
while the temporal parameters describe the dynamic switching between
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brain networks over time. Therefore, while the spatial structure of the
FC patterns is considered stationary due to the linkage with the struc-
ture of the brain, how these spatial features work together is allowed
to vary over time. It is further possible to constrain the dynamics of the
temporal parameters. Rather than randomly or continuously traversing
through the latent state-space, RSFCs most likely undergo discrete and
discontinuous shifts, resulting in the concept of “brain states” (Li et al.,
2013; Saper et al., 2010; Vidaurre et al., 2017). Hence we recommend to
impose piece-wise constancy to these temporally changing coefficients.
We show that using these powerful constraints, it is possible to over-
come the trade-offs and limitations currently pertinent to the dynamic
RSFC analysis.

We present a unified solution for extracting dynamic FCs from both
fMRI and MEG data, which directly addresses these limitations. We call
this method the time-varying dynamic network (TVDN) framework. We
develop a novel automatic and provably statistically optimal inference
algorithm based on the TVDN model to infer the dynamics that under-
lie the model. We extract the stationary spatial features and detect the
dynamic brain state switches adaptively. The algorithm is able to divide
the brain signals into uneven segments, each of which contains brain
activities in a stationary brain state. Once the parameters have been suc-
cessfully inferred, the entire spatio-temporal noise-free imaging signal
can be reconstructed through a high dimensional linear forward model
- a feature that is rarely available in current methods. The algorithm
involves a few tuning or hyper-parameters, which are automatically se-
lected to minimize the uncertainties of the number of switches across
independent samples. We expect that the presented TVDN framework
will prove effective in robustly generating dynamic FC features that will
serve as useful biomarkers of neurological and neurodegenerative dis-
eases.

2. Materials and methods

The dynamic FC contains spatial and temporal components
(Lang et al., 2012). The spatial features of the dynamic FC capture the
links among brain regions (Alexander-Bloch et al., 2010; Brier et al.,
2014; Geerligs et al., 2015; Sanz-Arigita et al., 2010; Van Den Heuvel
et al., 2009). The temporal features characterize the state changes of
brain activity (Di et al., 2013; Gonzalez-Castillo et al., 2015; Kitzbich-
ler et al., 2011; Moussa et al., 2011; Shirer et al., 2012). Furthermore,
the spatial features are constrained by the stable brain structures, and
hence they must be consistent over the signal sampling time and across
the image modalities. Moreover, different modalities have distinct tem-
poral resolutions, and therefore the temporal features are distinct across
the modalities. Considering these characteristics of the spatial and tem-
poral features, we develop a novel methodology to extract the time
invariant spatial features and time varying temporal features. Fig. 1
shows a flowchart of the estimation procedure. The purple oval rep-
resents TVDN inputs, and red ovals represent TVDN outputs. The blue
rectangles represent the building blocks of TVDN, which we discuss in
detail in Section 2.3.3.

2.1. Time-varying dynamic network

Let X;(z) be the brain signal at time 7 on the ith brain region of interest
(ROD), X ,’ (t) be the derivative of X;(r) with respect to r with ¢ € [0,T],
representing the increment of brain activity at time 7. Furthermore, let
d be the number of ROIs, we write X(¢) = {X,(?), ..., X;(1)}T, and X' (¢t) =
{(X :(t), ¢ ;(’)}T‘ In practice, instead of the true signal, we observe a
noisy signal at n discrete acquisition time points. Denote ¢; as the jth
acquisition time, to accommodate the noisy data, we write

Y; =X(@t) +e¢;, (1

where € jod=1,...,n, are independent mean zero random errors. Fur-
thermore, we assume

X'(t)) = A)X()), @)
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Fig. 1. TVDN pipline. The purple ovals represent TVDN inputs, and red oval represents TVDN outputs. The blue rectangles represent the building blocks of TVDN.
Two multimodality kernel examples are provided and will be discussed in Section 2.3.3.

where A(t)) is a time-varying unknown matrix of size d X d. We name
model (1) and (2) together the time-varying dynamic network (TVDN)
model, where the dynamics of the resting state functional connectiv-
ity are captured by the time-varying matrix A(). Model (2) is a direct
extension of the dynamic mode decomposition model (Brunton et al.,
2016; Kutz et al., 2016). To see the connection, first note that (2) is
equivalent to X(7 + dt) = {A(t)dt + I}X(¢r), where dt is the unit measure-
ment time and I is an identity matrix. When A(¢) is a fixed matrix over
time, we can consider A(¢)dt + I as a constant matrix. Then model (2) re-
duces to the dynamic mode decomposition model extensively studied in
Brunton et al. (2016) and Kutz et al. (2016). Furthermore, when A(-)
is a fixed matrix where A(-) = —gL, then the model (2) is also a net-
work diffusion model (Abdelnour et al., 2014) that explains how brain
activations from different ROIs are coupled together to generate new
signals via the structural connectivity given by the matrix Laplacian £
and the diffusivity constant g. Other algebraic graph relationships have
also been proposed, such that A may be given by the eigenvectors of
the structural (Abdelnour et al., 2018) or functional connectivity matrix
(Becker et al., 2018), after a suitable transformation of the eigenvalues.
While these approaches do not readily accommodate time-varying fea-
tures of A, they point to an important property of the eigenvectors of A,
which may be considered as resting state networks (RSN) (Abdelnour
et al., 2018; 2014). Because these RSNs represent static brain connec-
tions or other non-dynamic brain substrates, we propose the following
constraints that together constitute the TVDN model:

1. The eigen-decomposition of A(t;) is in the form of
At)) = UA@)U™,

where we fix the eigenvector U but allow the eigenvalues to depend
on time. Under this formulation, U may be considered as a set of spa-
tial features that are stationary over time. The absolute magnitudes
of the (time-varying) eigenvalues govern the relative importance of
each of the RSNs. This constraint reflects the biological concept that
the spatial features of brain activity might be stationary, while the
coupling between these stationary structures might be temporally
dynamic.

2. We then impose the condition that dynamicity in FCs arises from dis-
crete and potentially discontinuous shifts (“brain state switches”) in
activity, which we accommodate by allowing the eigenvalues, i.e. di-
agonal elements of A(z), to be piece-wise constant functions of time, re-
flecting the phenomenon that the brain has a tendency to stay within,
with sporadic cycling between the RSNs (Vidaurre et al., 2017).
Therefore, let ) = (7, k=0,1,... . M, M + 1;7) = 0,7y, =T) be a
set of true switching points, dividing the signal to M + 1 stationary

segments, we write
A = A(ry) if 7y <t <7y, and A(zy) # Aryp), Ary) # A(zi_p).

Such formulation suggests that when t € (zq,_;, 7o, ], A(¥) has a con-
stant value at A(zy,). And the values of A(.) are different at distinct
time points that fall into two consecutive segments constructed by
the switching points.

3. The number of nonzero eigenvalues in A(7),t € [0, T] represents the
number of intrinsic brain states in the brain activity data. It is well
known that only a few RSNs are typically operational in the brain,
and the canonical RSFC can be well captured by 7 — 20 such RSNs
(Yeo et al., 2011). In prior graph theoretic models also, A(-) are as-
sumed to be low rank matrices (Abdelnour et al., 2018; Raj et al.,
2019). It is therefore plausible to assert that the number of such RSNs
or brain state is quite small. Hence our final constraint is that

rank{A(t)} = rank{A(t)} < r < d,

where r is the maximal rank for A(z), 7 € [0, T'], representing the num-
ber of distinct brain states.

2.2. Model interpretations

Since A(¢) is constant in a given segment, the solution of the ordinary
differential Eq. (2) in the kth segment is given by X(¢) = Uexp{A(z,)(t —
Tok—1) U™ X, where X, is the initial value at the kth segment and
A(?) is a constant matrix in the kth segment. Let us define the real and
imaginary components of the jth eigenvalue as A; = y; + i2z f;. Then the
underlying signal in the kth segment satisfies

X(1) = Y Uy expl(y; + 22 f,)(t = 7o) HU™Y } X, 3)
j=1

where (U~')/ is the jth row of U~!. The real term y; is interpreted as
a coefficient that determines the growth or decay of the signal during
this segment, and the imaginary component f; is interpreted as the os-
cillation frequency of the mode (Kunert-Graf et al., 2019) in cycles per
sample interval, which is 2 seconds for fMRI data and 1/60 seconds for
MEG data). Therefore, when an estimator for A(r), say /A\(t), is available
for the kth segment, we can directly infer the grow/decay constant in the
segment as Re{K(t)} f and the signal frequency as Im{zA\(t)} f/2x, where
f is the sampling frequency of the signals.

It is worth mentioning that in situations where mulitple modalities
are available for the same subject, e.g. fMRI and MEG, the spatial fea-
tures U may be considered to be shared between the modalities. In those
cases TVDN will be able to aggregate the signals to generate a common
estimator for U across the modalities. Then this common estimator will
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be used to obtain the modality specific temporal features A(¢), where the
information borrowing is clearly embedded in the estimation through
sharing U. Augmentation with multi-modal data can potentially improve
estimation accuracy.

2.3. Estimation of the spatial and temporal features

We estimate the spatial feature U through a kernel based method and
detect the critical points for brain state switches via a switch detection
algorithm.

2.3.1. Notation

Let 7, ...,1, denote n signal acquisition time points. We denote M,
and M, be the first r column and the first » x r block of M, respectively.
Furthermore, define |M| be the cardinality of an arbitrary set M. Let
[[M]|  be the Frobenius norm of matrix M. For a vector a, let ||al|,, [|a]l,
be its L,, L, norm, respectively. Let M~! be the generalized inverse of
matrix M.

2.3.2. B-spline smoothing

To obtain a proper estimator for X (r) and X’ (¢) from the noisy obser-
vation Y (), we first de-noise the signals through the B-spline smoothing
as follows

I = argming Y |Y; - TB())|1%.
n - n -1
= ZYjB(zj)T{ZB(zj)B(rj)T}
j=1 i=1
and

)2(1/.) = fB(lj), ﬁl(tj) = fB;(Ij)’

where B(-) is the bth order B-spline basis with N interior knots and
X and X' are the smoothed version of X and X/, respectively. The B-
spline estimation generates an estimator of A(r). When the sample size
increases, this estimator will approach to A(7) consistently as shown in
Theorem 1 in Appendix E.2. This leads to the consistent estimations of
U and A(?) in the subsequent procedures. The de-noising step is neces-
sary to generate a good estimator for X'(r). In practice, people can use
other de-noising techniques, such as using Fourier-base or eigen-base
expansion to approximate X(r). We choose B-spline method because it
has well established statistical properties.

2.3.3. Estimation of the spatial features U
On these smoothed signals, we estimate the matrix A(z) at any time
point of interest 7, by minimizing

n ~ - T ~ ~
ciaw) = Y {Xa) - aa)Ra) | {K@) - aa)Ra) Ky, - 1), )

Jj=1

where K, (|x]) = 1/hK(|x|/h) is a kernel function with A4 be the band-
width. Here K,(|x|) is a deceasing function of |x|. Hence when esti-
mating A(t,), K,(|x|) weighs the samples higher when they are closer
to t,. The width A of the kernel controls how “local” the estimator of
A(1) is; if it is large, then the estimator of A(r) would hardly change
over time, and it would reduce to the dynamic mode decomposition
model (Kunert-Graf et al., 2019). A typical choice of K, (|x|) is the Gaus-
sian density function with the standard deviation 4. The bandwidth A
is often selected to satisfy 4 — 0 when n — oo so that even if n grows,
when estimate A(z;), the amount of information used in the estima-
tion remains fixed. In Fig. 2, we show the weights K, (r — 180) across
t € [1,360] in seconds for fMRI and weights K, (f — 30) across € [1,60]
in seconds for MEG when the rule-of-thumb bandwidth & (page 48 in
Silverman (1986)) was selected.
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Minimizing L{A(f,)} has a close form solution for A(z) as

n -1

n
DXHX) Ky — 1) | PAXEHXN VK1, = 1)
Jj=1 J=1

which is the Nadaraya-Watson estimator (Nadaraya, 1964; Watson,
1964) regularly used to estimate functions at specific time points.

To account for the fact that M = Z;’=1{§(tj)§(tj)T}Kh(tj —1,) can
be a low rank matrix, we replace the matrix inverse above with a
truncated-rank inverse such that all eigenvalues of M below a thresh-
old value are set to zero and removed from the pseudo-inverse. For-
mally, define a truncation function p, as p,(M) = B,diag{c;I(c; >
A),j =1,...,min(m, n)}Bg, where B,, B, are the left and right singular
vectors and o; is the jth singular value of M. Here we choose a trun-
cation threshold b, = O(h%r + n~'/2N'/2h2d), which is in the order of
IXWXT — XWX"| - /n with W = diag{K,(1; —1,).j = 1....,n} for a spe-
cific time point 7, and N be the number of B-spline basis. Here, as shown
in Theorem 1 in Appendix E.2, the first order h%r comes from the ker-
nel smoothing and the second term n~!/2N'/2h2d comes from the B-
spline smoothing. When n — co and n~'/2N1/2 - (0 as n — o, the error
IXWXT — XWXT|| . /n and quantity b, go to O if sufficient samples are
collected overtime. Thus, the estimation of A(z,) is

n n

A, = > X' ()X ) Ky — ts)p;()l Z{ﬁ(zj)ﬁ(zj)T}Kh(zj _—

j=1 Jj=1
The truncation function is specially designed for the high correlated se-
quences where the XWXT is a low rank matrix, but XWXT can be full
ranked due to the additional estimation error [XWXT — XWXT|| . /n. Us-
ing the truncation function helps to remove spurious eigenvalues, which
not only improves the estimation accuracy but also stabilizes the com-
putation.

When X is full row rank matrix, let Mg C {1, ..., n} be the set of time
indices, we can show that || ZA,GMS K(ts) —A@)r/IMs| = Op(hzr +
n~' N'1/24dr), which goes to 0 when the sample size increases under mild
conditions. Here, the first term h%r is the order of the estimation error
in the kernel regression procedure and the second term n~! N'/2dr is the
order of the error from the B-spline smoothing procedure. When 4 — 0
and n~'N'/? — 0 as n — oo, the estimation error of ¥ ¢ A,/ | M|
vanishes along with the increment of the sample size. This suggests that
we need sufficient samples to recover the underlying true parameters.
This fact also explains the phenomenon in the real data analysis that
the reconstruction of the MEG signals is better than that of the fMRI
signals. Therefore, we extract the estimator for U as the eigenvector of
seng A(t,), denoted as U.

2.3.4. Brain-state switch detection
Define M,. as the first r rows of matrix M, and M,
block matrix of M. Because

xr as the first r x r

X' (1) = AOX() = U, A, (U™, X(),
after obtaining U we reduce the data dimension as
U™, X' (1) = A, (U™, X(0). 6]

It is worth mentioning that multiplying both sides by (U™!),.X(¢) projects
the d dimensional ROIs to a lower r dimensional space. Furthermore,
A, (1) is a diagonal matrix, which contains only r unknown parame-
ters. Such dimension reduction procedure is crucial for speeding up and
stabilizing the switch detection algorithm, which makes the brain state
switch detection practically feasible for signals from a large number of
ROIs.

Let X'(1) = (U™1),.X(¢) and X(1) = (U™1),.X(r), we obtain the estima-
tor for true switch number M and locations 7,’s through minimizing a
modified Bayesian information criteria (MBIC) defined as

M

MBIC(z, M) = ¥ L(zj + 1. 74) + 2rlog(m)* (M + 1),
k=0
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Fig. 2. The weights K,,(r — 180) across ¢ € [1,360] in seconds for fMRI (left) and weights K, (r — 30) across ¢ € [1, 60] in seconds for MEG (right) when the rule-of-thumb

bandwidth A.

where « is a constant, and

Tk+1
L+ L) == Y logl®(X'(s) - A, X(s),0, % }]

s=t1+1

with ®(x, a, s) be the multivariate normal density function with mean a
and variance covariance matrix s evaluated at x. To solve the minimiza-
tion problem, we iterate over all possible segmentations of the sequence.
For the samples in a given segment, say s € (7, + 1, 7, ], we obtain Kk
as

Tk+1
Ay =argming Y ({X'(s9) - AKX (5) - A X ()},

s=ty+1

subject to the fact that A is a r x r diagonal matrix, and obtain ﬁk as
the estimated sample covariates defined as

Th+1
o= Y X -AXOUX () - A X)) /(241 = 70)-

s=r+1

We then find the best segmentation, that is the best (z, M) that mini-
mizes MBIC(z, M) as the estimated locations and number of the switch
points. In short, we obtain the estimators as

(%, M) = argmin,_,, MBIC(z, M).

We employ the dynamic programming algorithm as detailed in
Algorithm 1 following Jackson et al. (2005); Killick et al. (2012) to

Input: (1) L,;,, the minimum distancebetween two change points;
(2) M., the maximum number of changepoints; (3) x value.

1. ForO<i<n— Ly, +1andi+ Ly, <j<n+lcalculate L(7;,1)).

2. Initialize H(t; | 0) = L£(tj41.t,41) 5 =0,.ccon— Loy, + 1.
3. Forl1 <s< M, and0<i<n-s— L, update
H(t; ]s) = min

i+ Liyin <j<n—(s—1

){ L+ 1)+ H(t; | s—1)}.

Record the locations of s change points that yield H (1, | 5),

denoted by J..
4. For1 <s< M,

maxo find
M =argmin H (1, | s) +2rlog(n)(s + 1).
The corresponding estimated switch point set is7 = :fﬁ

Output: 7 and M.
Algorithm 1: Dynamic programming algorithm.

efficiently evaluate all possible segmentations and obtain 7 and M.
The dynamic programming algorithm finds the optimal value recur-
sively, avoiding re-computing the £ over overlapped segments (Bellman
and Roth, 1969; Bement and Waterman, 1977; Du et al., 2016a; Yau
and Zhao, 2016). The computational cost is O(rn®> M,,,,) and storage is
O(rnM,,,,), where M, is the maximum number of switches points in
the signal (Du et al., 2016Db).

2.4. Competing methods: Sliding window approaches

We also implement the sliding window approaches: time-varying
seed based (TVCOR), time-varying principal component analysis
(TVPCA) and time-varying dynamic mode model (TVDMD). We perform
TVCOR, TVPCA and TVDMD as follows where we construct windows
in different sizes sliding by four frames in each step. Let S; be the set
of time point indices in the sliding-window /, / =1, ..., L. For matrix
(Y;.t; € S)), TVCOR calculates the pairwise correlation between signals
from different ROIs, TVPCA extracts the principal components, TVDMD
extracts the dynamic modes (Brunton et al., 2016; Kunert-Graf et al.,
2019) from the brain signals. Next we vectorize the resulting correla-
tions, principal components and dynamic modes and cluster them into
four clusters, corresponding to the number of true segments in the sim-
ulation. Finally, we obtain the switch locations as the time points where
the vectorized correlations, principal components and dynamic modes
switch the cluster memberships.

3. Results
3.1. Simulation study

We construct A(t;) = UA(tj)U‘1 for j =1, ..., 180, where A(s) is diag-
onal matrix whose diagonal terms are eigenvalues and U is the matrix
whose columns are eigenvectors and eigenvectors estimated from a func-
tional magnetic resonance imaging (fMRI). Here A(s) is a rank six ma-
trix, which contains three switches at the 50,99, 144th time points. We
simulate data from model (1) and (2), where ¢ ;= UA(DU™ L& ; /10, =
1,...,n and &; is a sparse error vectors with 10% nonzero entries. Each
nonzero element in &; is independently generated from a normal distri-
bution with standard error (¢, —¢,)/8. We simulate the data 100 times
with the same set of parameters. Then we implement TVDN to obtain
the estimated spatial feature 0, the switch locations and the temporal
features 1A\(s), where we select x = 1.53 throughout the simulations so
that the algorithm detects the correct number of switch points in over
80% of the simulated samples.
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Fig. 3. The simulation results with three switches. TVDN detects the true brain state switches and can reconstruct the true signal. (a) Switch times. Red lines are the
true switch times and the dots are the estimated locations. (b) The black lines are the true X(r) at four selected regions. The red solid and dash curves are the mean
and median of the estimators and above and below blue curves are the 95% empirical confidence intervals. The figures from left to right represent the results of the
estimators whose mean squared errors fall at the 0%, 25%, 50% and 75% quantiles of the mean squared errors across all simulations.

We plot the estimated switches in Fig. 3(a). The result shows that
TVDN captures the brain state switch accurately. To illustrate the esti-
mation results, we reconstruct the data by using estimated spatial and
temporal features. We show the mean of the estimators at selected brain
regions and the 95% empirical confidence interval, that includes 2.5%
and 97.5% quantiles of the estimators over 100 simulations in Fig. 3(b).
Fig. 3(b) shows that TVDN recovers the original noiseless sequence and
the confidence intervals cover the true signals. We also add an addi-
tional simulation scenario when the switch points are distributed un-
evenly across the time in Fig. 12(b) in Appendix B. The result shows
that TVDN detects the correct switch points in most of the simulations
(82%). Finally, we examine the effect of B-spline knots selections on
TVDN reconstruction errors Fig. 12(c) in Appendix B by plotting the
distributions of the reconstruction errors across different B-spline knots
selections. The results show that TVDN is insensitive to the selection of
the B-spline knots so that the distributions of the reconstruction errors
are consistent across different selections of the number of B-spline knots.

In the left panel of Fig. 4(a), we plot the reconstruction errors defined
as

" s o
S IY, —exp { / A(u)du}Yl 2,
s=1 0

6

when different ranks for U are selected in the estimations. The re-
sults show that the estimation error substantially drops from the setting
when r = 4 to the setting when r = 6. Furthermore, when r > 6, the re-
construction error starts to incline. The convex phenomenon attributes
to the tradeoff between the dimension reduction described in (5) and
switch detection accuracy: when selecting a larger r, the transformation
(U1, X(#) contains more information in X(#), but it increases the estima-
tion errors for the brain state switch detection algorithm; on the other
hand, selecting a smaller r improves the switch detection accuracy, but
(U™1),.X(#) contains less information in the original data. On the right
panel in Fig. 4(a), we show the MBIC values when selecting « = 1.53,
which reach the minimum when three switches are selected.

We compare TVDN with the sliding window approaches: TVCOR,
TVPCA and TVDMD. The detailed implementations of these competing
methods are described in Section 2.4 in Appendix. We select six (the
rank of A(s)) principal components and dynamic modes throughout the
simulations.

Fig. 4 (b) plots the distribution of the Hausdorrff distance between
the true and estimated switches for the different methods. A smaller
Hausdorrff distance implies a better estimation. It can be seen that the
switches from TVDN have the smallest Hausdorrff distance with the
truth. There are several occasions that the sliding-window approaches
outperform the TVDN method. This is because we specify the true num-
ber of segments in the sliding-window approaches, while we leave this
parameter unknown in the TVDN approach and allow TVDN to choose
it adaptively. To illustrate the pattern in more details, we plot the re-
sulting switch locations from the sliding-window methods in Fig. 4(c).
Fig. 4(c) shows that none of the three methods correctly identifies the
switches. In addition, the sliding-window based methods are sensitive
to the window size changes, which leads to substantial different results
when varying the window sizes.

Finally, we adopt the same simulation procedure while assume a
time invariant A(s). Then we implement TVDN on the resulting high di-
mensional sequences and reconstruct the observed data. We show the
mean of the estimators and 95% confidence intervals in Fig. 12 in Ap-
pendix. The results show that even if A(s) is stationary over time, TVDN
correctly extracts the spatial and temporal features from the brain sig-
nals.

3.2. TVDN results for resting state fMRI data

We present the TVDN detection results from one fMRI sequence in
Fig. 5(a). We also obtain the growth/decay constant Re{K(-)} f and the
signal frequency as Im{A()}f /2x, where f = 0.5 Hz is the sampling fre-
quency of the fMRI signal. It can be seen from Fig. 5(b) that the rest-
ing state fMRI brain signals are active in the frequency range between
0.001 and 0.007 Hz. We calculated the Pearson correlation between
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the weighted spatial features, that is, column sum of ﬁx(t), and the
seven canonical networks from Yeo et al. (2011)’s independent com-
ponent analysis. As shown in Fig. 5(c), the subject’s weighted spatial
features have the strongest correlation with the limbic network in the
first segment (0.38), with the ventral attention network in the second
(0.443), third (0.415), sixth (0.432) and eighth (0.32) segments, with
the dorsal attention network (0.24) in the fourth segment. This chang-
ing correlation pattern is indicative of brain state switches over time,
demonstrating that different functional networks are operational at var-
ious times. In order to visualize the changing spatial patterns, we plotted
the weighted spatial features across the segments on the brain surface
in Fig. 5(d). The results again illustrate that the spatial pattern reflect-
ing brain state switches among frontal, parietal and occipital lobes over
time. We also present the estimated spatial eigen-mode, that is the mod-
ulus of the estimated U matrix in (e).

We also plot, in Fig. 13 in Appendix, the pair-wise connectivity mea-
sure in each segment, defined by exp(—||x; — x,||,), where x;,x, repre-
sent signal sequences from two brain regions. Fig. 13 shows that the
connectivity increases gradually over time. For comparison we show
analogous results from TVDOR, TVPCA and TVDMD methods with dif-
ferent window sizes in Fig. 14 in the Appendix. The latter results suggest
that these existing sliding-window methods are sensitive to tuning pa-
rameters and do not give coherent switch times when different window
sizes are selected. Another representative example similar to the above
is given in Fig. 15; its connectivity measures in Fig. 16 and the results
from competing methods 17 in Appendix.

3.3. TVDN results for resting state MEG data

We evaluated TVDN on resting state MEG data, where we consider
series of de-trended MEG source signals with d = 68 ROIs. Note that for
MEG data, we did not filter the source signals because the high time
resolution MEG data contain clear fluctuation trends that are not over-
whelmed by the noise.

We obtain the detection results as shown in Fig. 6. We also ob-
tain the growth/decay constant Re{A()}f and the signal frequency as
Im{K(-)} f/2x, where f = 60 Hz is the sampling frequency for the MEG
signal. The results in Fig. 6(a) show that there are seven switches in
the signal. In addition, the brain is active in the frequency range be-
tween 0 to 6 Hz as shown in Fig. 6(b). We also plot the correlation
between the weighted spatial features and the seven canonical network
in Fig. 6(c). It can be seen that the subject’s weighted spatial features
have the strongest correlation with the visual network in the first seg-
ment (0.31), with the dorsal attention network in the second (0.32),
third (0.45), fifth (0.28) and sixth (0.44) segments, with limbic network
(0.29) in the seventh segment, and with frontopartietal network (0.62)
in the eighth segment. These correlations are larger than those from the
resting state fMRI (Fig. 5). Finally, we view the weighted spatial features
across the segments in Fig. 6(d). We also present the estimated spatial
eigen-mode, that is the modulus of the estimated U matrix in (e). In addi-
tion, we plot, in Fig. 18 in Appendix, the pair-wise connectivity measure
in each segment, which shows that the connectivity increases from the
first to the third segment, decreases from the fourth to the sixth segment,
and increases again until the end of the time. We further show the results
from the existing sliding-window methods in Fig. 19 in the Appendix,
which demonstrates that the sliding-window methods are sensitive to
the window size selection. Another representative example is given in
Fig. 20, the corresponding connectivity measures in Fig. 21 and results
from competing methods in Fig. 22 in Appendix.

3.4. TVDN results for task based MEG data

To validate the accuracy of the brain state switch detection, we eval-
uate TVDN on MEG recordings during a simple eyes-open to eyes-close
task-switching experiment, where six eye close and open tasks blocks
were performed within one minute and the switch times were manually
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labeled. In Fig. 7, we show the detection results based on the MEG data
from two subjects. Clearly, the switch locations from TVDN are very
close to the manually labeled ones, which suggests TVDN can correctly
identify the brain state switch times. Take the first sample as an exam-
ple, we obtain the growth/decay constant and the signal frequency with
f =120 Hz be the sampling frequency for the two task based MEG sig-
nals. The brain is active in the frequency between 0 to 12 Hz as shown
in Fig. 23 (a) in Appendix, which is higher than that from the resting
state MEG. Furthermore, we obtain the band passed signals in alpha
band (8-12 Hz), and re-estimated the U and A based on the filtered
the signals. We then calculate the Pearson correlation between the re-
estimated weighted spatial features and the seven canonical networks.
As shown in Fig. 23(b) in Appendix, although the correlations with the
visual network change over time, the switch patterns do not exactly
follow the eyes-open and eyes-close states. This implies there are brain
state changes that are unrelated to the visual network during the data ac-
quisition period. Moreover, the brain views of the re-estimated weighted
spatial features in Fig. 23(c) illustrate that the brain state in alpha band
switches in between inferior parietal and supra marginal in the parietal
lobe in most of the segment, while it switches to occipital lobe at the end
of the time. We also plot in Fig. 24 in Appendix the pair-wise connectiv-
ity measure in each segment base on the unfiltered signal, which shows
that the connectivity decreases from the first to the fourth segment, in-
creases from the fourth to the fifth segment, and decreases again to the
end of the time. We further show the results from the TVCOR, TVPCA,
and TVDMD methods in Fig. 25 in Appendix, which suggests none of
the methods provides robust result across the selected window sizes. Fi-
nally, base on the second sample, we show the growth/decay constants,
signal frequency, correlations with the canonical networks and brain
views in Fig. 26, the connectivity measures in Fig. 24 and the results
from competing methods in Fig. 28 in Appendix.

3.5. Comparison to benchmark methods

We implemented TVDN on 103 fMRI datasets. The distribution of
the number of switches and ranks are displayed in Fig. 8 (a) and (b),
respectively, which show around 50% samples have eight switches and
over 65% samples have seven distinct brain states (ranks) in the resting
state.

We further evaluated the correlations between TVDN spatial features
with the seven canonical networks from Yeo et al. (2011)’s independent
component analysis under selected « and r. We extract the spatial fea-
tures as the moduli of the first » columns of U from each subject, and
project them to [0, 1] interval. We also implemented the TVPCA, TVDMD
methods to obtain the corresponding principal components and dynamic
modes from each segment as the spatial features, and calculated their
correlations with the canonical networks. We plot the distributions of
the maximum correlations between the canonical networks and the spa-
tial features from TVDN, TVPCA and TVDMD across 103 samples in
Fig. 8(c). It can be seen that although TVDN has far fewer spatial fea-
tures compared with TVPCA and TVDMD (each subject has only r spatial
features), the distribution of the maximum correlation is similar with
those from TVPCA and TVDMD. In addition, we plot the prediction er-
rors versus the number of switches from TVDN and TVDMD in Fig. 8(d).
To obtain the prediction error, for each segment in between two con-
secutive switch points, we use the first half of the fMRI records as the
training data to estimate A(7) in the segments. Then we use the rest of
the signals as the testing data, and calculate the related prediction errors
defined as

N
NI —exp { /0 A(u)du}Ysonz/nYSnz,
N

where Y, is the sth observed signals, Y, is first signal in the testing
sample, N, is the total number of testing sample (half of the signal
length) and the summation is over the test signals. We average the cor-
responding prediction errors across the segments and individuals for
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Fig. 6. The results from the first resting state MEG dataset. (a) The real sequences with switch locations detected by TVDN. The dash lines are the detected brain
state switches. (b) Changes of growth/decay constant (Re{A(-)}f), changes of the frequencies (Im{A(-)} f/2x). (c) The Pearson correlation between the weighted
spatial features and the seven canonical networks. (d) The weighted spatial features across different segments detected by TVDN. (e) The static spatial features i.e.

the moduli of first r columns of the U matrix.

the TVDN and TVDMD methods. For the TVDN method, we further con-
struct the 95% confidence bands of the prediction errors as 2.5% (lower)
and 97.5% (upper) quantiles of the errors in the 103 study samples. We
do not show the 95% confidence band from TVDMD because it almost
covers the entire plotted area. Fig. 8(d) shows that TVDN has smaller
prediction error than TVDMD, especially when the number of switches
is larger than four. It also suggests that when the number of switches
is small, each segment contains sufficient samples to recover the large
number of parameters in TVDMD. Therefore, when there are less than
four switches, TVDN and TVDMD perform equally well in prediction as
the confidence band cover both curves. However, when the number of
switches is moderately large, the sample in each segment is no longer
enough to provide accurate estimations for TVDMD parameters. There-
fore, the more parsimonious TVDN method yields substantially smaller
prediction errors than the TVDMD method.

To illustrate the robustness of TVDN, in Fig. 9, we plot the distri-
bution of the number of switches from TVDN and the sliding-window
methods when different kernel bandwidths and window sizes are se-
lected, respectively. Note that the kernel bandwidth in TVDN serves the
same function as the window sizes in the sliding-window methods. For
each window size, we adjust the kernel bandwidth so that the lower
2.5% and upper 97.5% of the Gaussian kernel correspond to the left
and right endpoints of the window, respectively. It can be seen that TV-
COR, TVPCA and TVDMD are sensitive to the window size selection —
the larger the window size, the smaller the number of detected brain
switches. In contrast, TVDN is robust to the kernel bandwidth selection,
with only small shifts of the distribution center with increasing kernel
bandwidth.

To show the reproducibility of our method, we split the 103 sub-
jects in the fMRI study to two samples with approximately equal sample
sizes (52/51). We then implement TVDN on the two samples separately

and study the distributions of the number switch points, the ranks, and
the correlation of the spatial features with the canonical networks. We
present the results in Fig. 10. These distributions are coherent in the two
samples, which demonstrates the reproducibility of TVDN.

3.6. Testing null hypothesis of static functional connectivity

TVDN is designed to estimate the time-varying functional connec-
tivity, it inevitably returns time-resolved estimates of functional con-
nectivities that vary to some degree with time. It is important to eval-
uate whether the estimated time varying functional connectivities sig-
nificantly deviate from those that might have been obtained from time
series generated by a process that lacks state switching (Lurie et al.,
2020). To this end, we develop a testing procedure to test that whether
a sequence contains switch points. More specifically, when a sequence
has been divided to multiple segments after the TVDN detection, we use
the first half of the signals in each segment as the training data and the
rest of the signals as the testing data. Under the alternative hypothesis
that there is at least one switch point, we use the first half of the signals
in each segment to estimate A(¢) based on the model X' (r) = A(1)X(r). We
then predict the second half of the signals using the segment-specific es-
timator for A(r), and calculate the prediction error as

M
Niot 25 22 1Y = explAG)s Y golla /1Y s 2,
k=1 s=

s=1

where M is estimated number of switch points, n, is the number of
testing sample in the kth segment, 7}, the kth estimated switch points,
K(?k) is the estimator for A(7,) based on the training data in the kth
segment, Y, is the initial observed value in the kth segment from the
testing data and N, is the total sample size of the testing data. Note that
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the summation is taken over the testing data on the kth segments. Under
the null hypothesis, we combine the training data from all segments, and
perform a resampling procedure to construct the null distribution of the
prediction error. More specifically, we sample paires of estimated X' (¢)
and X(r) with replacement from training data and estimate A matrix
based on the static model X’(r) = AX(¢). We then use the estimated A
to predict the signals in the testing sample and calculate the prediction
errors as

n

=

1Y x5 — exp{As}Yoll2/ 1Y ks ll2,
1

Mz

-1
NS

test

k

I
—_

§

where A is estimator for A using the sampled training data. We repeat
this procedure 100 times and obtain the p-value as the percentage of
prediction errors from null distribution that are less than the prediction
error under the alternative. We show the 100 prediction errors under
the null hypothesis versus the prediction error under the alternative hy-
pothesis for the two resting state and two eye open/closed MEG data
in Fig. 11 (a)-(d). The results show that all p-values are less than 0.05,
suggesting there is at least one switch point in every sequence. Further-

10

more, we plot the p-values for the fMRI data from 103 healthy subjects
in Fig. 11(e). The results show that all p-values are less than 0.05, sug-
gesting that every fMRI signal has at least one switch point.

4. Discussion and conclusion

We proposed a novel biologically-constrained model of the brain
state evolution during resting-state functional recording, called the
TVDN model. We presented an optimal algorithm to infer the model’s
parameters and to extract the spatial and temporal features from rest-
ing state brain signals. The method relies on the assumption that while
the spatial signatures of RSFC, given by the eigenvectors of the for-
ward model, are static, the evolution of temporal features, given by the
eigenvalues, is dynamic within the recording duration. We developed
an eigenvector estimation technique to extract consistent spatial fea-
tures across signal acquisition times. In addition, we proposed a dynamic
programming based algorithm to detect temporal switches adaptively
based on the signal oscillation patterns, under the biologically-inspired
assumption that state transitions are abrupt rather than smooth in time.
Using the inferred spatial and temporal features, we can reconstruct the
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underlying mean signals that generate the noisy observations. This may
be considered a model-based smoothing operation, with several poten-
tial applications. Thus, our method is a legitimate generative model of
dynamic functional activity in the brain. In addition, the ability to re-
construct noiseless signals gives the algorithm an opportunity to tune
its parameters using a reconstruction error metric to be minimized. We
evaluated the method on thorough simulated data, followed by a rig-
orous characterization of its performances on empirical fMRI and MEG
data from the BIL laboratory at UCSF. The simulation study shows that
TVDN captures the true brain switch locations and is able to recover
the true signal that generates the observed ones. In the empirical study,
for comparison we implemented several competing techniques, includ-
ing TVCOR, TVPCA and TVDMD methods. Compared with competing
methods, TVDN produces smaller set of spatial features but their corre-
lations with the seven canonical networks have the same distributions
as those from the TVCOR, TVPCA and TVDMD methods. This suggests
the smaller set of spatial features from TVDN is sufficient to explain the
brain connection patterns. Furthermore, TVDN provides more robust
temporal features, which are adaptive to the signals and noises from
different data and are insensitive to the tuning parameters, such as ker-
nel bandwidth. In addition, the evaluation on the eye-opening-closing
task data shows that TVDN captures the brain state switches accurately.
More importantly, TVDN has significantly smaller prediction errors than
TVDMD does when predicting “future” activity in the same segment.
Last but not least, the resulting temporal features include instantaneous
estimates of the active oscillation frequency of functional activity, thus
imparting the method with attributes of a model-based alternative to
conventional time-frequency analysis.
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The ultimate solution to improving the estimation accuracy on fMRI
data is to integrate multi-modality data into the analysis. It is there-
fore highly advantageous that TVDN is naturally able to handle multi-
modality data. To understand this aspect intuitively, note that the sta-
tionary spatial features are by design modality invariant, and can be
shared across multiple modalities. This imparts the TVDN framework
with the ability to integrate information from both fMRI and MEG to
estimate the spatial features. For example, we could train TVDN on con-
catenated data (over time) from different modalities to obtain shared
spatial features. These shared spatial features can then be used to es-
timate the modality-specific temporal features, using information from
both fMRI and MEG at each step, which will certainly improve estima-
tion accuracy. While in this study we have shown how TVDN can operate
seamlessly on both fMRI and MEG, we have not integrated the two for
the current analysis because the data from paired samples are not avail-
able. Evaluating its performance on synchronized multi-modality data
would require larger collaborative studies involving both the fMRI and
MEG centers.

One question of clinical interest is whether the dynamic RSFC pre-
dicts clinical outcomes, such as cognitive scores and disease risk. To
address the question, the first and foremost step is to extract subject-
specific dynamic RSFC features. However, the dynamic RSFC features
from existing sliding-window methods give a set of RSNs of varying
numbers across subjects, which makes it difficult to explicitly define
unique spatial and temporal features for each subject. In contrast, TVDN
extracts subject-specific dynamic RSFCs from both the fMRI and MEG
data, which generates explicit spatial and temporal features that can be
directly used to predict clinical outcomes. Evaluate the relationship be-
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Fig. 9. TVDN’s brain state switch detection is robust to the kernel bandwidth selection but the sliding-window methods are sensitive to the window size selection.
The distributions of the switch points when different window sizes (wsize) are chosen for the sliding-window methods and different kernel bandwidths are chosen
for TVDN. The kernel bandwidths are adjusted so that the lower 2.5% and upper 97.5% quantiles of the Gaussian kernel correspond to the left and right endpoints

of the window, respectively.

tween the dynamic RSFC features and clinical outcomes may potentially
generate novel biomarkers for disease prediction.

4.1. Related methods

Sliding-window approaches are the most popular methods to extract
dynamic RSFC from brain imaging data. However, the most popular
seed-based sliding window approaches do not typically allow for recon-
structing the original brain signals in time or space, since they do not
require a model of signal generation. And the temporal resolution of the
inferred dynamic FC is inherently limited by the window length, which
in turn is constrained by the requirement to have sufficient samples
and signal-to-noise ratio within each window. In practice, this trade-
off means that only slow changes in brain dynamics can be detected or
tracked. Furthermore, in almost all current implementations, the sliding-
window width is typically pre-specified and is not adaptable to the signal
statistics or sampling noise in real time. In addition, they do not gener-
ate common features from the multiple modalities that may be available
from a single subject (e.g. fMRI and MEG). This impedes information
sharing across modalities and precludes benefiting from shared or re-
dundant information between modalities.

Moreover, these methods typically suffer from very high data dimen-
sionality, since at each window, the brain state is given by an entire
network or several high-dimensional independent components - with
no a priori notion of which features are actually evolving and which are
static. Therefore the ability to detect discrete brain state switches then
becomes dependent on the ability of unsupervised clustering algorithms
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like k-means or hierarchical clustering, to overcome the so-called“curse
of dimensionality”. Finally, most dynamic extensions to static FC meth-
ods are purely data-driven and are not informed by biologically plau-
sible modes of dynamicity in the brain, since they do not constrain
which brain signal features can change dynamically and how - this as-
pect is discussed below. Therefore, sliding-window approaches present
several limitations that must be overcome to gain further progress in
critical neuroscience and clinical applications. Several extensions of
current methods have been proposed to address some of these limita-
tions. To improve the sliding-window seed-based correlation approach,
Faghiri et al. (2020) proposed a new metric replacing Pearson corre-
lation between signals. Furthermore, Vergara et al. (2020) proposed a
robust method to determine the number of brain states from the slid-
ing window methods. Hidden Markov models (Baum and Petrie, 1966)
are an another robust alternative to capture brain state switches in the
frequency domain. Vidaurre et al. (2017) and Quinn et al. (2018) used
group level data to estimate the model parameters, assuming that study
subjects share the same latent structure. Vidaurre et al. (2016) combined
multivariate auto-regression model (Penny and Roberts, 2002) and hid-
den Markov model to obtain brain transitions, assuming that brain oscil-
lations depend on the signals in a short time period prior to the current
time. However, neither the improved sliding window methods nor the
hidden Markov models are able to extract both the static spatial and dy-
namic temporal features from non-stationary time series. It is possible
that further extension of these methods to account for both static and
dynamic features will prove worthwhile, but out of scope of the current
work. Furthermore, because the HMM model involves a large number
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Fig. 10. The distributions of the number switch points (a), the ranks (b), and the correlation of the spatial features with the canonical networks (c) are the same in

the first and second halves of the fMRI samples.

of parameters, ad hoc dimension reduction procedures are always per-
formed to reduce the computation burden. For example, the computa-
tional time of the HMM method proposed in Vidaurre et al. (2018) grows
polynomially with the number of states. When studying the whole brain
signals, the number of regions of interest was reduced by using the prin-
cipal component method, the number of latent state was restricted to be
a small number, and the time series were split to segments using sliding
windows to facilitate the computation. The computational time of TVDN
grows linearly with the number of ROIs (please see the discussion in the
last paragraph of Section 2.3.4), which avoids restricting the number of
brain states and does not require to use ad hoc sliding windows to split
the time series.

4.2. Limitations and future directions

In our implementation, the tuning parameters of TVDN for fMRI were
selected to minimize the average reconstruction error, and for MEG they
were selected to minimize prediction error from cross validation among
brain regions. A better tuning strategy might be to use cross-validation
across individuals, where the data are split between training and test-
ing individuals, and the tuning parameters are selected to minimize the
prediction error in the testing individuals. However, because our switch
detection relies on the entire time series of the whole brain, there is no
existing method to split the study samples and validate parameter selec-
tion in the temporal switch detection procedure. Furthermore, a smaller
prediction error may not necessarily imply a better prediction of disease
states, like neurodegenerative disease risk. When the disease outcomes
are available, an appropriate parameter selection strategy would be to
select the tuning parameters that minimize the disease prediction error.
Additional data and further research along these lines are ongoing in
our laboratory.
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Generally, fMRI signals have lower signal-to-noise ratio and tem-
poral resolution than source-reconstructed MEG signals, which limits
the former’s sample size available for parameter estimation. Hence, the
brian state switching patterns extracted by TVDN from MEG appear
clearer than those from fMRI, with larger correlation with canonical
networks. This suggests that MEG imaging could be a more informative
technique to capture dynamic RSFC than fMRI. It is possible that alter-
native smoothing approaches other than the one taken here might prove
more effective on fMRI. It is possible that deconvolution of the hemody-
namic response function might be helpful on fMRI data, an aspect that
was not considered here.

5. Code & data availability

Simulated and pre-processed data and code that support the findings
of this study are available from the GitHub repository at https://github.
com/feigroup/TVDN. The code used to produce basic figures can be
run as interactive Jupyter notebooks. Instructions for downloading and
setting up the computing requirements are documented in the README
file.
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Appendix A. Additional methods and data preprocessing
procedure

Al. Tuning parameter selection

We choose rank r so that the first » moduli of the eigenvalues of
> K(t) comprise 80% of the total sum of them, where the summation
is taken over a random subset of times. Furthermore, we select the
bandwidth for kernel in (4) to be the rule-of-thumb bandwidth times
0.5. Moreover, for the resting state fMRI data, we select ¥ to mini-
mize the variation of the number of switches across the subjects. For
the resting state MEG data we select « through resampling over acqui-
sition time. More specifically, for a given «, we select five subsamples,
where the jth sample contains data at times 5¢ + j with j = 1,...,5 and
t=1,...,(n—5)/5. Since the five sequences are in conjunction with each
other, they should have similar numbers of switches.

A2. Data and preprocessing

A2.1. fMRI data
Resting state fMRI data from 103 health subject were acquired at the
UCSF Neuroimaging Center using a Siemens 3T TIM TRIO scanner using
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a T2*-weighted AC-PC aligned echo planar imaging (EPI) sequence with
the following parameters: TR = 2000 ms, TE = 29 ms, flip angle = 75,
FOV = 240 x 240, slice thickness = 3.5 mm. Each fMRI was recorded
over six minutes with 0.5 Hz sampling rate. Preprocessing included slice-
timing correction (Cox and Hyde, 1997), image realignment to correct
for motion (Jenkinson and Smith, 2001), and intensity normalization.
The head-motion parameters were estimated before any spatiotemporal
filtering was used (Jenkinson et al., 2002). After regression of nuisance
signals, fMRI was coregistered on the T1-weighted anatomical image,
and the resulting time-series were normalized to MNI space with the
non-linear registration from ANTS (Avants et al., 2009). Following time
series extraction, data were detrended and a bandpass filter was applied
between 0.009 and 0.08 Hz. To remove the boundary effect from the
filtering procedure, we removed the first 25 sampling points. Hence,
the total length of the signal is 155.

A2.2. MEG data

MEG data were acquired in the Biomagnetic Imaging Laboratory at
University of California, San Francisco (UCSF) with an Omega 2000
whole-head MEG system from CTF Inc. (Coquitlam, BC, Canada) with
1200 Hz sampling rate. For resting state data analysis, two subjects were
instructed simply to keep their eyes closed and stay awake. We collected
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4 trials per subject, each trial of 1-min length with a sampling rate of
1200 Hz. We randomly chose 10 seconds or equivalently 12000 time
samples for brain source reconstructions for each subject. Additionally,
for one subject, MEG data were collected across two sessions for an eye-
opening-closing task. To measure eye opening and closing, two pairs of
Electrooculography (EOG) electrodes were placed to the left and right
of the eye during MEG scans. A potential difference was recorded when
the subject blinked eyes and a signal peak occurred in the EOG channel
of scanned data. We manually labeled EOG peaks to indicate time peri-
ods of eye opening and closing for TVDN analyses. Across both resting
and eye-opening task, all MEG sensor locations were co-registered to
each subject’s anatomical MRI scans. The leadfield for each subject was
calculated in NUTMEG (Dalal et al., 2004) using a single-sphere head
model (two spherical orientation leadfields) and an 8 mm voxel grid.
Each column was normalized to have a norm of unity. The data were
digitally filtered to remove DC offset and any other noisy artifact outside
of the 1 to 45 Hz bandpass range.
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To infer the neuronal activity in the source space from the
MEG recordings, which were in sensor space, source localization
was performed using time-frequency optimized adaptive beamforming
(Dalal et al., 2004) using the custom-built open source NUTMEG soft-
ware tool. Since this study focuses on the cortical areas and only the
sources belonging to the 68 cortical regions were selected based on the
Desikan-Killiany parcellations. The time-course of activity in each of the
68 brain regions was estimated by averaging the time-course of source
activity estimated from voxels within a 20 mm radius of its centroid.

The resting state MEG data were downsampled to 600 Hz, while the
eye-opening-closing MEG data were downsampled to 1200 Hz in our
analysis.

Appendix B. Additional simulation results

Appendix C. fMRI additional results
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Fig. 12. (a) The simulation results with no switch. Here A(¢) has six ranks. The black lines are the true X(7) at four selected regions. The red solid and dash curves
are the mean and median of the estimators and above and below blue curves are the 95% empirical confidence intervals. The figures from left to right represent the
results of the estimators whose mean squared errors follow on the 0%, 25%, 50%,75% quantiles of the mean squared errors across all simulations. The confidence
intervals are narrow because the simulated random errors have small variabilities. (b) The switch points detection results for the setting when the difference between
the switch points are significant different. (c) The reconstruction errors are insensitive to the number of B-spline knots selection.
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Fig. 13. The pairwise connectivity over 90 ROIs from the first fMRI example.
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Fig. 14. The brain state switch detection is not robust across different window size selections for the sliding-window approaches on the first f{MRI example.
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Appendix D. MEG additional results



F. Jiang, H. Jin, Y. Gao et al.

signal strength =

3. 1I II1 w v VI VII  VIII IX

T

Change of growth/decay constant

Change of frequencyy

A
& & .
<<

L R |8 R
3 000
\069‘.

S
o i --015

N |
& & 5 v v ., = i 7 :

« Segl  Seg2  Seg3  Segd  Seg5  Seg6  Seg7  Seg8  Seg9d

<

Neurolmage 254 (2022) 119131

&,
ale
&, @
Py P
&, Q
2fa

®,Q
a2¥e

Fig. 15. The results from the second fMRI sample. (a) The real sequences with switch locations (black dash lines) detected by TVDN. (b) Changes of growth/decay
constant (Re{A()} f), changes of the frequencies (Im{A(-)} f/2x). (c) The Pearson correlation between the weighted spatial features and the seven canonical networks.
(d) The weighted spatial features across different segments detected by TVDN. (e) The static spatial features i.e. the moduli of first r columns of the U matrix.

Fig. 16. The pairwise connectivity over 90 ROIs from the second fMRI example.
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Fig. 17. The brain state switch detection is not robust across different window size selections for the sliding-window approaches on the second fMRI example.

Fig. 18. The pairwise connectivity over 68 ROIs from the first MEG resting state example.
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Fig. 19. The brain state switch detection is not robust across different window size selections for the sliding-window approaches on the first MEG resting state
example.
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Fig. 20. The results from the second resting state MEG record. (a) The real sequences with switch locations (black dash lines) detected by TVDN. (b) Changes of
growth/decay constant (Re{A(:)} f), changes of the frequencies (Im{A(-)}f/2x). (c) The Pearson correlation between the weighted spatial features and the seven
canonical network. (d) The weighted spatial features across different segments detected by TVDN. (e) The static spatial features i.e. the moduli of first r columns of
the U matrix.
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Fig. 21. The pairwise connectivity over 68 ROIs from the second MEG resting state example.
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Fig. 24. The pairwise connectivity over 68 ROIs from the first MEG eyes-open and eyes-close example.
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Fig. 25. The brain state switch detection is not robust across different window size selections for the sliding-window approaches on the first MEG eye-opening-closing
example.
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Fig. 26. The results from the second eye-opening-closing MEG record. (a) Changes of growth/decay constant Re{AOM} /), changes of the frequencies Im{AQC)}f /2x).
(b) The Pearson correlation between the weighted spatial features and the seven canonical networks. (c) The weighted spatial features across different segments
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Fig. 27. The pairwise connectivity over 68 ROIs from the second MEG eyes-open and eyes-close example.
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Fig. 28. The brain state switch detection is not robust across different window size selections for the sliding-window approaches on the second MEG eye-opening-
closing example.
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Appendix E. Statistical consistency

We show the statistics consistency of estimating A(¢) and U in the
following sections. These theoretic results support the statistical con-
vergence rates of A()and © presented in Section 2.3.3. First we list the
regularity conditions that are necessary to prove the statistical consis-
tency.

E1. Regularity conditions

Al In the kernel function K, (t) = K(t/h)/h, K is a second order sym-
metric kernel function that satisfies / K(1)dt = 1, [ K*(t)dt < co, and
[ 2K(t)*dt < co. h satisfies h — 0 when n — oo.

X;(?) is bounded on [0,1].

Definetheknotss_,, = =1,=0<t; <... <ty <l=tp 4=
In4+p Where N is the number of interior knots and [0,1] is di-
vided into N + 1 subintervals. N satisfies N — co, N~ !n(logn)~! -
oo when n - oo.

And for 7 in (7o, Topr1] A ,p(Toxr1 — Top)/n S L, k=1,..., M,
Assume X,(t) € C4([0,T]), there is N + b dimensional y,,;, and a bth
order Bspline such that sup,cior BT(t)yo; — X;(0)] = O,(N7). And
denote Ty = (yg;,i = 1,...,d)".

Let h, be the distance between the (p + 1)st and pth interior knots

and let h), = b max bhp, hy h,. There exists a constant cj,,

A2
A3

A4
A5

A6
min
b<p§N+b
0<cp, <oo, such that h,/h; <cp,.

O(N~).

Therefore, h, = O(N~Y), h, =

E2. Theorem of the statistical consistency

We show the consistency of the &(t) and U in Theorem 1. Below we
first show that the brain activity X;(¢) is a smooth function and can be
approximated consistently with B-spline function in Proposition 1. By
utilizing the results from Proposition 1 and Lemma 1, Theorem 1 and
Remark 1 establish the consistency of K(r) and 0.

Proposition 1. Assume Condition (A4) holdes, for given s, there is a Bspline
function sup,c(o 1 B0 yo; — X,(0)] = O,(N~*) with order b > s.

Proof. By the fact that each element in A(s) is a piece-wise constant
function we can write

M,

AW = Y AT (xg/n < 1< Toppr /),
=0

where 7yy = 0 and 7y, = n. We first show that for t € (zo, /n, 7o /1]
by the induction

k-1
X,(1) = exp { X Az = To0)/n + Ayt - TOk/n)}XO. 7

1=0

First (7) holds for ¢ € (r/n, 7o, /n] because for any constant matrix M,
X'(t) = MX(¢) as a closed form solution as

X(7) = exp(M1)X,.

Suppose (7) holds for t € (z/n, 7ox41 /1], we show that it holds for 1 €
(Tok41/1, Toxg2/n]. For any t € (zory1 /1, Tor42/nl, we have

exp {Agy (¢ — Topp1 /1) }X (T 41 /1)

exp {Ak+l (r— 70k+1)/")}

X(1)

k-1
exp { Z Ay (o141 — o)/ 1+ A (Torqs — To)/n }Xo

1=0

k
exp { Z A(Tore1 = 7o)/ 1+ Apy (8 = Tor /1) }X()s

1=0

which is the same as the relation in 7. Hence, (7) holds.
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By the Taylor expansion, t € (zy /n, 7y, /n] we have

(1 =70 /m)!
X(1) = X(zox/n) + Z —OkX(TOkH/n)

I=1
& Al — o /m)

X T

I=s

X(zor+1/1)

(l - T()k/”)

= X(ror/n) + Z X(zgre1/m) + Ry

=1

A 7
where R, =Y N (’—UMX(TO,( +1/n). Now by the Condition (A4)

that ||A,(||01,(10,(Jrl — 7;/n) < 1, we have there is a s, such that

- Al
IRy, 11 < 11 Y

— 7o /n)!
—— = X /)l
I=54 :

)

< (= 7oe /M IA Nop Xzt /M2 Y 1/K!
I=1

= (t = 7o/ 1A o I X (i1 /) e

= 0,(N7).

Furthermore, because for any s, degree polynormal function there is a
b > s; — 1 order exact Bspline representation (De Boor, 1978), we have

conclude that there is a Bspline function |B(-)Tyy; — X;(t)| = O,(N~*)
with order b > s fort € [0,1]. O

Lemma 1. Assume B,k =1,...,d are B-spline bases with equally dis-
tributed knots. There is a constant D, >0 such that for each spline
ZZ:I ¢y By (1), and for each 1 < p < o

1 d p ql/p
D¢, < [ / {chBkm} dr] <l
0 k=1

where ¢ = {c, {((t, —t,_,)/b}/P, k= 1,...,d)", where d is the number of
basis and b is the distance between B-spline knots.

Proof. This is a direct consequence of Theorem 5.4.2 on page 145 in
DeVore and Lorentz (1993). []

Theorem 1. Assume Conditions (A1)—(A6) hold. Let U, € R4, V, €
R and X, € R be the left, right singular vectors and singular value
matrix of the rank g matrix X, with g > r.
Assume E{||X(®)|l,} = O,(1) and E{[le®)ll,} = O,(1). Suppose
VaN-1X(@) - X()} = G (0{1 + 0,(1)}

VAN (X! (1) = X (1)) = G,(){1 + 0,(1)}
n " -
G, = WZ{Y,' - Xi(ti)}B(li)T{ZB(ti)B(ti)T} B(®)
i=1 i=l

Gy (1) = /nN~/? Z{Yi - Xi(’i)}B(’i)T{

i=1

n -1
Y Bt)B()" } B'(1)

i=1

G, (1), G,(t) are mean 0 Gaussian vectors with each element to be of order
o,(1).
P

A, = Y Ky

j=1
n

{ > Kit; - )Xt X()" }
j=1

for some constant C > 0. And if |[Mg| =

> {Aw-acu g |

SEM g

<! <t \T 41
— 1)X)X () Peipen-12N12124)

O(n), when h — 0, we have

H|MS|-1 = D(h’r +n~'/>N'/d)
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for some constant D > 0 and ﬁ, satisfies
10, = U,,llp = 0,(h*r +n™' N'/2a),

where U

par 15 the eigenvector of 3 oy AUy, UL .

Proof. Let W = diag{K,(t; —1,),j = L,...,n}, for each 7;, we have
n
nt Y Kyl = )X )Xt
Jj=1
n
=171 Y Kyt = 1)X ()X ()" + Ry (1) + Ry(1)
j=1

= 17" Y Kty — DA X)X )T + Ry (1) + Ry(t)
j=1
=n! 2 UKt — 1)/ RYAGE )X XA )T + Ry (1)) + Ry(ty)

J=1

T
= / K K{(t = 1,)/RAOXOX)Td P, () + R, (1,) + Ry (1)
0
T
= / KWA(t, + h)X(t, + hu)X(t; + hu)Td P,(u) + R, (t,) + Ry (t,)
0

T
= / K@{A@,) + At )hu + A"t )h%* {1 + 0,(1)}}X(t, + hu)
0
X(t, + h)Td P,(u) + R, (1,) + Ry(25)
T
= A(ts)/ KX(t, + X (t, + hu)Td P,(u) + i R Q{1+ 0,(1)}
0
+R,(t,) + Ry(2,)
= A(t)XWX" /n+ h?*R,Q {1+ 0,(1)} + R, (t,) + Ry (1), ®)
where P, is the empirical measure of ¢,
Q) = {AC X )X()" + A )X )X (1) + A" 1 )X ()X},
1QillF = O0,(r),

R (1) = n7 Y Kyt — 10X (1) (X)) - X(t)))T
j=1

=1 Y Kyt = 1)IX' (1)) + n” PN Gy (1) (1 +0,(1))]
=1

X7 2NY2G () {1 +0,(D}T. ®

Ry(t,) = n7! Z K@, — zs){f(’(tj) =X/t IX()"
j=1

=17 Y Kty — t)n NGyt ) (1 + 0, (D)X, (10
j=1

and recall that
T
R, = / K(u)u? dP,(u).
0

Similarly we have

n

w7 Y Kyt — 1)K R(e)T
j=1

= 17" Y Kty — t)X()X ()" + Ry (1) + Ry(2,)
j=1

T
= / K@X(t, + hwX(t, + hu)"d P,(u) + h* R, Q{1 + 0,(1)}
0
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+R;(1,) + Ry(ty)
= XWX"/n+ h? R, Q{1+ 0,(1)} + Rs(t,) + Ry(t,),

where

Q = {X' ()X (1)" + Xt )X" (1)T + X" 1 )X(t)" }. 1Qll r = O,()

Ry = 17" Y Kyt — 11X, — X)X,
Jj=1
=n"! Z Ky (t; = t)n™ PN2G (1) {1 + 0,(1)}X(1)T
j=1
R, = n1 Y Kyt - 1)R(1){X(t,) - X(2)) T

J=1

nt Y Kyt = )IX(t) + n T ANY2G () (1 + 0, ()]
Jj=1

xn V2NY2G (1)1 +0,(D)}.

By the asymptotic bias of the kernel regression estimator, and the fact
that R;, R, are rank 4 matrices, we have

IR3llp = C;n~ 2NY2R2 a, | Ryl p = Cn™ ' /2N2h2d

for positive constants C,, C,, where the last equality holds by the order
of the asymptotic bias of the kernel estimator. Furthermore, let X, be
the upper ¢ x g diagonal matrix of X, and V,, be first g column of V,,
we can write

T
xwxT = Ux{ (quvxq\;VVXquq) g}UI

Hence, as h — 0, there is a C such that

n
-1 1 o o o
pC(h2+n_]/2Nl/2h2d){n Zlkh(tj — 1)X()X(;) }
=
= (XWXT/n)™!

-1
= Ux{ (B VI WY Ziq/n) O}Ui- (1
0 0

Combine (8) and (11), and Condition that A(z,) is rank r matrix, we
have
Aw,) - AG)U,, U
= KPR Q {1+ 0,(D}(XWXT /n)™!
+R (£ )XWXT /)™ + Ry (1) XWX /) 12)

= 0,(h*r'?) + Rt )XWXT /m)™" + Ry (1) XWX /n)™! (13)

The last equality holds because Q,;(XWXT/n)~! is a rank r matrix and
QXWX /)~ || = \/rlIQ; (XWX /n)! ||, = 0,(y/r) by the fact that
IXll; = 0,(1) and in turn [X'(®ll; = IAOXOIl, = IADl,, IXOIl, =
0,(1). Furthermore,

Mg~ Y, Ria)XWXT /m)~! ||

SEMg

= lInt Y IMgI™ Y Kyt = t)IX (1)) + 7 ANP2Go(2 ) {1 + 0, (1))
j=1

SEMg

X[ NG () (1 + 0, (DT XWX /n) 7!

= lIn7t Y FUNIX @) + 07 ENPPGo ()11 + 0,(1))]
Jj=1
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(™ 2NY2G () {1 + 0,(1)}T
(XWX /n)™! ||
— Dln—l/ZN—l/Zq’

where D, is a positive constant and f,(-) is the density function for ¢.
The third line holds because |Mg|™' ¥ . mg Kn(tj — 1) is a consistant
estimator for f,(z;). The last equality holds by the arguments as follows.
First let

Q, (1) = £ (X' (1) + n” N3Gy (1) (1 + 0,(1)}]

and g, (1) be its kth element. Then by the definition of G, in the Theorem
statement, the second to the last equality can be written as
n n -1
™" Y Qu(t)B)TA Y BB
j=1 i=1
D BE)Y, = X)) T XWX /m) 7|
i=1
x{1+0,(1)}
-1

T n
[ /0 Q,(B®'d1q Y B(t)B()"
i=1

D BANY, - X(t)) XWX /m) 7| p {1+ 0,(1)).
i=1

-1

T n n
I /0 Q,mBM'dts Y BupBt)' Y BU)(Y, - Xt)}"ll,,
i=1 i=1

IA

X[IXWXT/m) ™[ {1+ 0,(1)}.

Now  because [ q(t)B,()dt = q(t*) [ B()d1 = O,(t; — 1;_y) =
Op(N‘l) by the mean value theorem and Lemma 1 with p=1.
Therefore, each element in

-1

T n
HB@) dt B(,)B(:)"
/OQa()() 3 BB

is of order O,(N -1). Furthermore, each element in G, is of order 0,(1),
and hence each element in

1 n
Y B (Y, - X())"

i=1

Y B(t,)B(:)"

i=1

is of order n~!/2N''/2 by the definition of G, in the theorem statement.
Therefore,

n n -1
™" Y, Qut)BE)TA D BB b 1Y = X)) llmax
Jj=1 i=1
— Op(n—l/ZNl/ZN—l) _ Op(n—l/ZN—l/Z)

and hence
-1

In= Y QutB)TS Y B)B@)T » (Y, = X)) N,
j=1 i=1
=0,(dn” 2N/,

Now combine with the fact that (XWXT/n)~! is a rank g matrix, we
obtain the result in the last equality.
Similarly, we have

Mg~ Y Ry )XWXT /)™ || = Dyn™'/2Nd
SEMg

for some positive constants D,. Combine with (12), we have

Mg~ Y, A= Y AU UL, Il = Dk + 072N 2a)

SEM g SEM g
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for positive constant D. The first r column of the eigenvector
of |[Mg|™! ZSeMS A(tS)quUIq is U, respectively. Hence ||U, -U,| =
O,(rh* + n~1/2N1/2d) as h — 0. This proves the result. []

Remark 1. Theorem 1 shows that when XWXT is a full rank ma-
trix, ¥ ep Alt,)/IMg| converges to X ..\ A(t,)/|Mg| consistently.

Hence ﬁr — U, with probability one. If XWXT is a low rank matrix,
Lsemg Alt,)/IMg| converges to a projection of 3.\, A(t,)/|Mg| on
the sub-space of RY, where ¢ is the rank of XWXT. In practice, if XWXT
is a low rank matrix, we can first project X to full rank sub-space and
perform the TVDN algorithm on the projected signals. The conditions

VaN=1{R() - X(1)} = G, ({1 +0,(1)}
VAN R (1) - X' (1)) = Gy (1 +0,(1))

are the general properties of B-spline estimator as shown in (Jiang et al.,
2019; 2015). We use the result without proof.
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