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Abstract

We study the problem of matrix completion when the missingness of the matrix entries is
dependent on the unobserved response values themselves and hence the missingness itself is
informative. Furthermore, we allow to take into account the covariate information to estab-
lish its relation with the response and hence enable prediction. We devise a novel procedure
to simultaneously complete the partially observed matrix and assess the covariate effect.
Allowing the matrix dimensions as well as the number of covariates to grow ultra-high,
under the classic low-rank matrix and sparse covariate effect assumptions, we rigorously
establish the statistical guarantee of our procedure and the algorithmic convergence. The
method is demonstrated via simulation studies and is used to analyze a Yelp data set and
a MovieLens data set.
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1. Motivation and Introduction

Matrix completion has become a popular research topic in both statistics and computer
science, mainly driven by the commercial need from online providers. Consider a concrete
example from Yelp, where the scores from a total of n customers evaluating m restaurants
are of interest. Let Y;; be an indicator denoting whether the evaluation of the ith subject
regarding the jth restaurant is positive, where ¢ = 1,...,n,7 = 1,...,m. Let Y be the
collection of Yj;’s, i.e. Y is a n x m matrix. Obviously, not everyone will evaluate every
restaurant, so many elements in Y are missing. Let R;; denote the corresponding miss-
ingness index and let R be the corresponding matrix formed by the collection of R;;’s. It
is sensible to suspect that the very fact of missingness is related to the potential evalua-
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tion score itself—in fact, some individuals may dislike some restaurants so much that they
refuse to visit them hence will naturally not evaluate them. Thus, if they had visited and
evaluated, the feedback would be likely negative. This naturally leads to the nonignorable
missing mechanism, where Y;; and R;; are dependent on each other. To recover the miss-
ing entries enables us to predict the missing evaluating scores, but is challenging because
it is impossible to infer the distribution of Y;; based on the biased sample formed by the
observed entries. The issue can be resolved when there exist additional baseline covariates
for each observation, while these covariates are independent of R;; given Y;;. When such
covariate information is available, we aim to predict the missing entries of Y based on the
relation between Y;; and the covariates.

Luckily, in the Yelp data, a large number of covariates have been collected, which include
but are not limited to the covariates of a restaurant such as size, price, open hours, and traits
of a customer such as the number of his/her friends and the number of his/her restaurant
reviews. These covariates are fully observed, which makes the parameter estimation feasible
even though Y;; and R;; are correlated. On the other hand, the covariates are of the ultra-
high dimension, which brings difficulties in parameter estimation. To take into account both
the high dimensional covariates and the nonignorable missingness nature of such data, we
impose the familiar sparsity and low-rank constraints on the relation between Y;; and the
covariate vector X;;. Furthermore, in practice, the missing-data mechanism is often not well
understood. Thus, we consider statistical methods that do not require specification of the
mechanism. This leads us to the matrix completion problem with ultra-high dimensional
covariate and nonignorable missingness.

In the remaining text, we describe our statistical procedure in Section 2 and establish
the finite sample statistical properties in Section 3. We consider the computational issue
both algorithmically and theoretically in Section 4. Simulated examples are demonstrated
in Section 5 and we analyze both a Yelp data set and a MovieLens data set in Section 6.
We conclude the paper in Section 8, and relegate the proof details to an Appendix.

2. Methodology

We now present the probability model used to construct likelihood for the parameter estima-
tion. Let X;; be a p-dimensional covariate vector. Furthermore let the kth element of X;; be
Xijr and let X be the n x m x p tensor whose (i, j, k)th element is X;;,. Let Y be the n xm
matrix whose (4, j)th element is Y;;. We work in a very flexible model class, the generalized
linear model, where the conditional density of Y;; given X;; is f(Y;j, ®oi; + ,BOTXU), where
By is the true effect from X;; on Y;;, @g;; is the (¢, j)th element of ®¢. Here Oy is the true
intercept matrix which is a low rank n x m matrix with rank r. Because it is expected that
only a small number of covariates may affect the outcome, we assume the widely adopted
sparsity assumption on (3, and assume the sparseness of B is s, i.e. ||Bgllo = s. When
we focus on the estimation of the parameter 3, we also assume » BorXF to be sparse to
ensure identifiability, where X* is a n x m matrix whose (4, 7)th element is Xijk- Of course,
when we only aim at prediction, then we do not make this assumption. Here despite of the
sparsity and the low-rank assumptions, we do not restrict s,r to be finite. In other words,
we allow s, 7 to grow with the sample size, although at a slower rate than p and n, m. For
notational simplicity, we denote d = \/mn.
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Under the informative missing setting, Y;; and R;; are dependent. This implies that the
expectation of the logarithm of the observed data likelihood > i, 377" | Ryjlogf(Yi;, ©;; +
BTXij) is no longer maximized at the true values B¢, ®g, because E{R;;logf(Y;;, ®;; +
BTX;;)} does not equal to E(R;;|X;;)E{logf(Yi;, ®;; + B1X;;)}, which would have been
the case for the noninformative missing. Hence when estimating ©;; and 3, the information
in R;; cannot be ignored, and the loss function constructed from this likelihood cannot be
used to estimate the parameters. On the other hand, because X;; is fully observed, under
the assumption that X;; is independent of R;; when Y;; is given, even though Y;; may not
be available, we still can use the conditional distribution of pr(X;;|Y;;, ®9, B¢) to construct
a pseudo-likelihood. In fact, the conditional independence between X;; and R;; given Yj; is
not essential and can be relaxed. As long as part of the covariates in X;; are independent
of R;; given Y;; and the remaining part in X;;, we can still construct a pseudo-likelihood.
The essential benefit of considering a pseudo-likelihood is in eliminating the sampling bias.
Intuitively, the observed portion of the data, i.e. the complete data, form a biased sample
of the hypothetical full data, caused by the sampling bias in Y;;’s. Through conditioning on
Y;;’s, the problem on the surface becomes to study the dependence of X;; given Y;;, which
does not relate to how Y;; is sampled any more since the sampling of ¥;; now becomes a
design issue hence could be done in any way we like. To help better understanding this
issue, consider a standard regression problem where the response variable is named X and
the covariates named Y. In estimating the parameter involved in the model of X | Y, we
can construct various estimators based on the pairs of data (Y, X)’s without worrying how
the covariates Y’s are sampled. In fact, even if the covariates Y’s are collected by design,
say we only collected the covariates on a grid in a fixed region, it does not prevent us from
obtaining a valid estimator based on the collected data. Here, in our context, we can view
the non-missing Y;;’s as the collected covariates, and the complete data (Y;;,X;;)’s as the
observations in a standard regression problem to help grasp the intuition behind the pseudo
likelihood method. We name this view point a covariate-dependent design scheme.

Specifically, starting from the conditional distribution of X;; given Y;;, the average of
the logarithm of the pseudo-likelihood, i.e. the conditional likelihood of the complete data,
is written as

(mn)Mog | [T [ [{pr(Xi;[Yij» ©0, B) Y19 | oc —(mn) ™Y Y~ £5(©0, By),

i=1j=1 i=1 j=1

where £;;(©, 8) = R;il;;(©, ),

£ij(©,8) = — [IOg{f(Yiﬁ ©;; + B Xi;)} —log {/ (Y5, ©45 + 5TX)9(X)dXH :

and g(-) is the joint Radon-Nikodym probability density function of X;j;, i.e., the Radon-
Nikodym derivative of the probability distribution of interest with respect to the dominating
measure. We require that g(-) is not a Dirac function. The dominating measure for the
continuous component in X;; is the Lebesgue measure. The dominating measure for the
discrete component in X;; is the counting measure, and therefore the integration with

respect to the discrete component is the sum over its domain. Clearly, because Pr(R;; =
1Yij, Xij) = Pr(Ry; = 11Yj;), E{Ri;{i;(©, 8)|Yi;} = E(Ri;|Yi;) E{li;(©, 8)|Yi;}. Therefore
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the minimizer of E{/(;;(®,8) | Y;;} is the minimizer of E{L;;(®,8) | Yi;}. Furthermore,
Pr(R;; = 1]Y;;) and the marginal distribution of Yj; do not contain information regarding
the unknown parameters. Therefore taking expectation with respect to Yj;, we minimize
E{¢;;(®,8)} through minimizing E{L;;(©, 3)}.

Now, let £(©,8) = (mn)~ !>, > 721 Lij(©,8) be the negative pseudo-likelihood.
Conditional on the observed Y;;’s, the observed covariates form a conditional random sample
even when the response missingness depends on the response value Y;; itself. Furthermore,
the expected logarithm of the pseudo-likelihood, i.e. E{L;;(®,8)}, is maximized at ®
and B,. This can be verified in two ways. The first way continues from the covariate design
point of view. Because the pseudo-likelihood is the same as the conditional likelihood of
Xi;j | Yi; restricted to the complete data, while the complete data are obtained from a
covariate-dependent (i.e. Y dependent) design scheme, hence the maximizer is the true
regression parameters ®¢ and 3, at infinite samples. The second way is through detailed
mathematical computation. We can verify that the derivative of the log pseudo-likelihood
has expectation zero at ®g and 3. Further, we can also verify that the log pseudo-likelihood
is a convex function, so it is indeed maximized at Oy and 3, at infinite samples. Hence,
following standard M-estimation theory (Van Der Vaart and Wellner, 2000), maximizing the
pseudo-likelihood will indeed lead to a valid statistical estimation procedure. Note that the
function we maximize is not the same as the log-likelihood of the observed data, regardless
we write the likelihood in terms of X;; | Yj; or Yj; | X, but is the conditional likelihood of
the complete data, hence it is named pseudo-likelihood.

When the dimensions of ® and 3 are ultra-high, the value of the regression function
can diverge to infinity if the entries of ® and 3 are not bounded. This is unreasonable
when the response has finite mean. To control the magnitude of the regression function,
we assume that ®g and 3 have finite entries, and search the estimators in the feasible sets
that |®||max < a and ||B]| < a for a constant a > 0. Combining with the low-rank and

sparse structures of ® and 3 respectively, we propose to estimate @, 3, through

(®,

9)

= argmin - £(©,8)+ Ael|®|. + Asl8lh- (1)
1©]max<a, |8l <a

Here, ||®||. is the nuclear norm of the matrix ®, which drives the resulting estimator towards
a low-rank matrix. Furthermore, ||3||; is the L; norm of 3, which induces the sparseness
of the estimated 3. In general, for any matrix A, we use ||A||r, [[Allop, [|All+, [|A]l1, [[A]ls
and [|Al/max to denote the Frobenius norm, spectral norm, nuclear norm, matrix 1-norm,
matrix sup-norm and the element-wise maximal norm of the matrix A, respectively. We
also use ||a||2, ||al|co, ||alj1 to denote the Lo, Lo, and L; norm of the vector a, respectively.
We use boldface letters to denote vectors or matrices throughout the text.

3. Statistical Properties
3.1 Additional Notation

We introduce some additional notations to facilitate the presentation of the theoretic prop-
erties. Some of their explicit forms are derived in Appendix A. Let fo and fa2 be the
first and second derivative of f with respect to the second argument, respectively. Let
S(Yij,X;;|®,8) be the derivative of —log{f(Y;;,®;; + BTX;;)} with respect to M =
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Notation Definition

f2 The first derivative of f with respect to the second argument.
foo The second derivative of f with respect to the second argument.
Z;j An n x m matrix with its (¢, 7)th entry 1 and all other entries 0.
dm, Upper bound of |Ha(y, x|©, 3)|.

dg, Upper bound of |S2(y,x|©, 8)].

a Upper bound of ||3]|cc and ||©||max-

o Upper bound of ||X;]]1.

Xk n X m matrix whose (i, j)th element is Xy

O1F 326%0,2((11{2 + dg‘z)

O4r 32(12(de + d%‘z)

Wi(©,8) ol 024,(©. 8)/90(O, 2:5).

dw Upper bound of supy, ||[vec{R o W (0O, B¢)}|1-

dex Upper bound of supy | 377 377 Ry E{S2(Yij, X|@o, Bo) Xk|Yij }.
Eiijijk —Rmaél](®7ﬂ)/3ﬂ, eEEij.

Se (Y, X0, 0)

Partial derivatives of —log{f(Yi;, ®;; + BTXZ-]-)} with respect to ®

Sp(Yij, Xi;|©, B)
S(Yi;, X510, B)
2 (Y35, X510, B)
H;(Yij, X550, 8)
H(Y};, X0, 8)
He (Y;Xi;]©,B8)
Hp(Yy, X510, 8)
F5(X,Y|®,8)

(
Partial derivatives of —log{f(Yi;, ®;; + 37X;;)} with respect to 3.
[vec{Se (Yij, Xij|©, 8)}", Sp(Yij, Xi1©, B) ] .

The first derivative of —logf(Y;;, ®;; + ﬁTX@'j) with respect to ©;; + ,BTXM.

The second derivative of —logf(Y;;, ®;; + ,BTXij) with respect to ©;; + ,BTXij.
The Hessian matrix of —log{ f(Y;;, ©i; + 87 X;;)} with respect to {vec(®)T, 3T}T.
The second derivatives of —logf(Y;;, ®;; + BTX) with respect to vec(®).

The second derivatives of —logf(Y;;, ®;; + BTX) with respect to vec(83).
92L(©,8)/0808".

Fo(X,Y|®,0) 9*L(©, B) /0vec(®)dvec(©)T.

E{Fa(X,Y|0,8")} E{Fa(X,Y|0,0)

- Howo gg-
E{Fe(X,Y[|0",8)} E{Fe(X,Y|O,0)

oot p=p"

Table 1: Notation.

{vec(®)T, BT}T. Obviously S(Vij, X;;|®, ) is the score function. We further decompose
the score function as S(Y;;,X;;|®,8) = [vec{Se(Yij, X0, 8)}T,Ss(Yij, Xi;|©,8)1",
where Sg (Y;;, X;;|0©, 3) and Sg(Y;;, X;;|®, B) are the partial derivatives of —log{ f(Yi;, ©;;+
BTXij)} with respect to ©® and 3 respectively. Let Se 11(Yij, X450, 3), Sg.1(Yij, X4, B)
be the (k,)th element and kth element of Sg(Y;;, X;;|®,8) and Sg(Y;;, X;;|©, B), respec-
tively.

Further let S»(Yi;, Xy;|©,08), Ha(Yij, X;;|0,3) be the first and second derivative of
the negative log-likelihood —logf(Y;;,®;; + BTX;;) with respect to @;; + B1X;; and
let H(Y;;,X;;|©,3) be the Hessian matrix of —log{f(Vi;, ®;; + BT X;;)} with respect to
{vec(®)T, BM}T. Let He(Y;;X;j|©,3) and Hg(Yij, X;;|®,3) be the diagonal blocks of
H(Y;;,X;;|®,8), i.e. they are the second derivatives of —logf(Y;;, ®;; + 3T X) with respect
to vec(®) and B respectively.

Let z;; be an n x m matrix with its (¢, j)th entry 1 and all other entries 0. Note
that we can extract the (,j)th entry of ® using z;; and ®. To simplify the notation,
we define W;;x(©,8) = ef 0%(;;(©,3)/0B0(0©,z;;). Then e} 0°L;;(©,3)/0B0(O,z;;) =
R;ijWiii(©, B). Let Wi(©, B8) be the n x m matrix with its (¢, j)th element W;;,(©, 3). Let
Eij = —R;;00;;(©,8)/98 and E;j, = el E;;. We also write X* as the n x m matrix whose
(i,j)th element is X;jx, i.e. X¥ is the kth slice of the tensor X. Define Fg(X,Y|®,3) =
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9’L(©,8)/0B08Y, and Fe(X,Y|O,3) = 0°L(0O, B)/dvec(®)dvec(®)T. Specifically,
Fs(X,Y|©,0)

= (mn)~! (Z Z Rij[Ha(Yij, X510, 8)Xi; X — E{Ha(Yij, Xi5]©, 8) XX |Vis}
i=1 j=1

+E{55(Yij, X5]0, B)X X |V} — E{Sa2(Yij, X44|©, ﬁ)Xiijij}@]) :

and

F®<X?Y’®75)

- (mn)_l (Z Z R;;j[Hy(Yi;,Xi]©, B)vec(zij)vec(zij)T

i=1 j=1
—E{H,(Yij, Xij|©, B)vec(zij)vec(zi;) " | Yi; }
+E{S3(Yij, Xi|©, B)vec(zij)vec(zi) ' [V}

—E{S2(Yi;, X510, ﬁ)VeC(Zij)|Yij}®2]> ,

where all the expectations are with respect to the true distribution of X;; given Yj;.

We use 3* to denote a point on the line between B and 3, and ©* to denote a point
between ® and ®g, respectively. We summarize the notations in Table 1.

3.2 Conditions
To obtain the statistical convergence properties of our estimator, we assume the following

regularity conditions.

(C1) I190]lmax < a, ||Bplloc < a for a constant a > 0.

(C2) The matrix > 7_, BoxX"* is sparse and the matrix © has low rank. Specifically,
inf,~0 w1 (p)wa(p) < 1. Here,

p p
max {plrsign (Z ,BOkX’“) 11, p7 " |Isign (Z BOka> llmoo} :

k=1 k=1
w(p) = pTHUU max + AIIVV T max + [Ul2500 [V [l2500,

w1(p)

where for any n x m matrix M,
IM|lpsq = max([Mvllg,veR™ |v], <1),
and U,V are the left and right singular vectors of ©.

(C3) supy, ||[vec{R o W(®,3y)}|1 < dw for © that satisfies ||®|max < a. Here, dw > 0
and a is the constant defined in Condition (C1).
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(C4) Assume

Sup 1> Ri;E{S:(Yi;, X|@q, By) Xi|Yi}| < dx.

i=1 j=1
Here dgx > 0. Here dgx does not need to be bounded.

(C5) Assume f(Yij, @g;; + Bg Xi;) is a continuously differentiable function with respect to
Oy;; and By. Furthermore, S3(Y;;,X;;|@0, ) is a sub-Gaussian random variable.
HXUHl < for co > 0. This implies ||XU||2 < ¢p.

(C6) |H2(y,x|®, 3)| is bounded uniformly by dg, and |Sa2(y, x|®, B)| is bounded uniformly
by dg, for all y,x, and ©,3 in the feasible set that ||®||max < a, [|B]|cc < a. Here

dg, > 0 and dg, > 0 satisfy cja®(dg, + d%,)\/log{max(p,mn)}/(mn) — 0 and
a®(dy, + d§2) dlog(d)/(mn) — 0.

Condition (C1) bounds the supnorms of @ and 3 so that the true parameters fall in
the feasible set defined in (1). Let E = Y"P_, B0, X", then Condition (C2) is a standard
identifiability condition for the matrix completion problem to identify &y and E, where the
regression function is the sum of a low-rank matrix and a sparse matrix (Hsu et al., 2011).
Here, we set © to be low rank and allow E = Zizl BoieX* to be sparse because the covariate
matrices in the social media data are often naturally sparse, where the majority of them are
dictionary variables with a small number of nonzero entries (Robin et al., 2018). Without
this condition, there will not be a clear definition of 3, hence it is 1mp0881b1e to derive the
distance || B— Boll2- Condition (C2) needs to hold only when we are interested in estimating
© and 3. If the goal is to predict the missing entries in Y, Condition (C2) is not necessary.
Note that we also assume sparsity on 3, which is customary in treating high dimensional
regression and does not pertain to the matrix completion problem alone. Condition (C3)
ensures that the objective function has bounded second derivative with respect to 8 in Ly
norm. Conditions (C4), (C5) and (C6) provide the upper bounds of the high dimensional
covariate, score functions and Hessian matrix, respectively. It is important to note that
co, df, and dg, are not necessarily bounded. Their growing rates jointly determine the
convergence of B and © as shown in Theorems 1 and 2.

3.3 Statistical Guarantee for EI and ©

We utilize the proﬁhng procedure to show that ,6 and © converge to the true values. For
B, we show that B approaches B, when © in the loss function is fixed at ©. To reach
this result, we first derive an upper bound of [|0£(©, B,)/98||sc in terms of dpx and dyy.
The upper bound vanishes as long as dgpx and dw grow slower than mn. Here because
we consider © instead of ®p in the loss function, the upper bound is slightly larger than
the standard result in high dimensional generalized linear models, where only a sparse high
dimensional parameter is of interest. Furthermore, to assess the convexity of the objective
function, we start with verifying that a type of the restricted eigenvalue condition (e.g.
Bickel et al. (2009); Van De Geer et al. (2009)) is satisfied on a high sparsity (low Ly/Ls)
and low spikiness (low Lo/L2) parameter set, which contains our true parameter that
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satisfies [|B]lo = s and ||B]lcc < a. To do that, we carefully define a set B(D) (Section
C), which has the following two properties: (1) the covering number of B(D), that is the
number of spherical balls of a given size that cover B(D), grows slower than O{exp(mn)};
(2) its union over all values of D covers the entire space of 8. In such B(D), we show that
the probability of |3TFg(X, Y|©,8)8 -BTE{Fs(X, Y|©,8)}8| — 0 at given © B for any
3 approaches one when mn — co. In addition, we show that BT E{Fg(X, Y|®,,@)},@ > 0,
which leads to the result that Fﬁ(X,Y\C:),,B) is asymptotically strictly positive definite
as described in Lemma A.10. This establishes that Fg(X, Y|©,3) indeed satisfies the
restricted eigenvalue condition. This, together with the boundedness of 10L(O, Bo)/ 98] 0,
leads to the convergence of H,@ Boll2- We use a similar procedure to derive the upper bound
for ||@ Oy || when 3 in the loss function is fixed at B Specifically, to study the convexity
of the objective function, we verify that the restricted eigenvalue property is satisfied on
a low rank (low nuclear norm/Frobenius norm ratio) and low spikiness (low Lyax/L2) set,
which contains the true parameter that satisfies rank(®) = r and ||®||ax < a.

Lemma 1 Assume Conditions (C1), (C4) and (C5) to hold. Then there is a constant
w > 0 so that

H 9L(O©, By)
o

with probability at least 1 — 2{max(p,mn)} 1.

< \/wlog{max(p, mn)} N dpx N 2adw

mn mn mn

‘ o0

Lemma 1 is a direct consequence of Lemmas A.5 and A.6 in the Appendix. Here the
term /wlog{max(p, mn)}/(mn)+(mn)~'dgx is the order of |0L(Oy, By)/0B| x, while the
remaining term on the right hand side represents the order of the error ||0L(®q,B8,)/08 —

OL(8,80)/08 -
Theorem 1 Assume Conditions (C1)-(C6) hold. Let

Ao > 2\/wlog{max(p, mn)} N 2dpx N 4adW.
mn mn mn

Y

aOB 040/@

og{max(p, mn og{max(p, mn)} ) /*
8a\/§’7\/1 s{max(p )},(4aog)‘1/2{2afpl s{max(p. )}} )(2)

1/2
A A 2 A
1B—Bylla < max [ 10017 +{3 '3\/5}] L g2BVs

mn mn

with probability at least 1 —4max(p, mn) ™' —2(mn)~! —2{max(p, mn)}~C for some positive
constant C, where o1p = 32c2a*(dp, + dQSQ), and

a0g = amin(E[Ri; E{S3(Yi;, X410, B°)X ;X L[V} — RiyE{S2(Yij, Xi51©, B%)X5]Yi;}%%) /4,

where amin(M) here and throughout the text is the minimal eigenvalue of a given matriz
M.



HicH DiMENSIONAL MNAR

The proof of Theorem 1 is lengthy and is detailed in Appendix C and D. The convergence
of ,@ depends on many things, including the growing rate of p, m, n, the sparseness parameter
s, the bounds dp,,ds,, dpx, dw, co, a, A\g and the missingness related quantity opg. If s and
apg are finite, dw and dpx grow slower than mn, and log(p) = o(mn), together with the
condition cZa?(dy, + df%)\/log{max(p, mn)}/(mn) — 0 in Condition (C6), then the upper
bound of || B— Boll2 in Theorem 1 will go to zero as mn increases. It is worth mentioning
that ag always appears in the denominator of the upper bound of || B — Boll2- It indicates
that although pr(R;; = 1]Y;;) cannot be zero, it is allowed to go to zero at a certain
rate. In fact, as long as its vanishing speed is sufficiently slow so that Agy/s/apg and

o1r[log{max(p, mn)}/(mn)]*/?/ags converge to zero, then the upper bound of 18 = Boll2
will still go to zero.

It is worth mentioning that, for the identifiability of the parameters, we do not allow a
dense covariate matrix in the model. To see that, our Condition (C5) requires || X1 < co,
where ¢g is a quantity that determines the growing rate of o1p = 32c3a?(dpy, + d%z).
As shown in Theorem 1, the upper bound of the estimation error satisfies (2) in proba-
bility. Thus, for ||3 — By||2 to vanish to zero, we would want o1r to grow slower than
v/ (mn) /log{max(p, mn)}. Suppose we have bounded dy, and dg,, which is the case for
logistic regression, then c3 cannot grow faster than \/(mn)/log{max(p, mn)}. This prevents
us from having a dense covariate matrix. In fact, if the covariate vector is dense, it is likely
to violate the identifiability Condition (C2) that > %_, Box X" is a sparse matrix.

In practice, it is very rare that people can collect high dimensional dense Gaussian ma-
trices in the social media data. In the social media data, the majority of the features are
categorical, such as gender, race, address, etc, which are named dictionary in the literature
(See, for example, Robin et al. (2018)). Such features are then transformed to dummy vari-
ables and result in only very few nonzero values in the covariate matrices. Some features,
such as address, can have a large number of categories, and lead to a series of high dimen-
sional but highly sparse matrices X*’s formed by dummy variables. The matrix X* thus
has value one only at the entry corresponding to a specific user and a specific restaurant.
In all the above situations, we are likely to have a sparse matrix Zzzl BopXF.

Our method can be applied to the majority of the social media data with the dictionary
as the covariates, which is a very challenging problem even under missing-at-random settings
(Robin et al., 2018). The proposed technique can be very useful in analyzing social media
data.

Lemma 2 Assume Conditions (C1)-(C6) hold. Let

Ao > 2\/wlog{max(p, mn)} n 2dpx n 4adW.
mn mn mn

Then for some cq,7y > 0,

1/2
dlog(d) ) 1001 3Agv/5)”

< 2dp, + 2d

< ¢q — + (2dn, + 2dg,) max P + a03

o~

8£(®07 B)
00
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mn

(4040[3)*1/2 { 203 log{max(p, mn)} }1/4>

with probability at least 1 —1/d.

This lemma is a direct consequence of Lemmas A.13 and A.14 in the Appendix. Here
cqgy/dlog(d)/(mn) on the right hand side captures the order of ||0L(®g,3;)/00O| s from
Lemma A.13, and the remaining terms on the right hand side describe the order of [|0L(©y, 8,) /00—
0L(®y, )/ 8@\\00 We further show that the estimator © described in (1) converges to the
true parameter value in probability as well.

Theorem 2 Assume Conditions (C1)-(C6) hold. Let

dlog(d 10 3\ 2
Ao > 2¢q Og()+2(2ng—|—2d%v2)max<[ oLF +{ '6\/5}]

1/2

mn Qogymn QB
1/4
+32w§ S5y \/1og{ma;g, 0} ags) 2 {2U%Flog{max<p, mn)}} / ) |
08

mn

Then

13700r  36A4r]"° | Blevr
32a0e/mn 2o ’

1/4
Gay/r [ B8 (4%@)1/2{203Fd10g<d>} )

mn mn

@ — |l < max ([
x0e

with probability at least 1 —exp{—Cdlog(d)}—2exp{—dlog(d)} —d~!, where C is a constant.
Here o4r = 32a°(dy, + d%2) and

e = Omin ((mn)1 Y > B[Ry E{S3(Yij, Xi5|©7, B)vec(zi;)vee(zij) " [Yis}
i=1 j=1
—Ri; E{S3(Yi, ij\Q*ﬁ)VGC(Zij)IYz'j}@Q])/4-

We provide the proof of Theorem 2 in Appendix E and F. The convergence of e) depends
on the order of m, n,r, p. Assume that ® is a matrix with finite rank, dlog(d)/log{max(p, mn)} —
0o, and dlog(d)/(mn) — 0. Combining with the order of ||8£(G)0,B)/8®Hop in Lemma 2,
the upper bound of ||© — @ || ¢ is of order Op{dlog(d)/(mn)*/*}. Similar to Theorem 1, we
can see that age always appears in the denominator in the upper bound of ||© —®g||2. This
implies pr(R;; = 1]Y;;) is allowed to go to zero as long as the vanishing speed is sufficiently
slow so that A\e\/7/ape and oqr{dlog(d)/(mn)}'/?/apge converge to zero.

Due to the high dimensionality of 3 and @, the convergence of B and © is difficult to
achieve. The sample version of the loss function can be non-convex, which may lead to
non-unique solution of the estimation procedure. To show statistical convergence, we show

10
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that the second derivative of the loss function with respect to the parameters satisfies the
restricted eigenvalue conditions as shown in Lemmas A.10 and A.19 for 3 and ©®, respec-
tively. These restricted eigenvalue conditions guarantee the convergence of our estimators
in the feasible set. Unlike standard results, the convergence of e depends on that of B
and vice verse, and hence we require log{max(p, mn)} = op(mn) and dlog(d) = op(mn)
to achieve the consistency of both B and ©. The detailed theoretical derivations are in
the Appendix. We first establish a series of necessary lemmas in Sections C and E of the
Appendix, and then provide the detailed proofs in Sections D and F of the Appendix.

4. Computational Algorithm and Convergence

We now describe the computational algorithm and show its convergence rate theoretically.
In the computational aspect, we treat the two parameters ®g and 3, differently. In updating
B3 we use the proximal gradient algorithm, and in updating ® we use soft-impute. We name
the combination of the proximal gradient algorithm and the soft-impute treatment as the
Soft Impute Proximal Gradient (SIPG) algorithm. In computing the integrals, we can view
the integrations as mean and approximate it using sample averages across different X;;’s
when this brings computational gain.

Remark 1 Note that 0L(©,8)/08 — 0L(0©,3)/08 = (0£(0,8")2/0808",8 — B'), by
Conditions (C5) and (C6), where B" is a point on the line connecting 3 and B'. Therefore,
10£(©,8)/08 —0L(©,8)/08|2 < 0B — 8|2 with g = {2¢3(dn, + d%Q)}. We say that
L(©,8) is og smooth with respect to B. Similarity let ® and ©' be two m x n matrices,
and O, = Oy if (I, k) # (4,7), and ©}; # ©;j. It is easy to show that

|0L(©,8)/00;; — 0L(O', B)/004j| < 0e|0:; — O],

where g = 2(dy, + df%). We say that L(©,3) is o@ smooth with respect to ©. Similarly
we can show that

10£(©,8)/08 — 0L(®',3)/98]l2 < 0pel|® — ©| F,
for ope = 2co(dm, + d%,). We say that 0L(©,8)/0B is ope Lipschitz continuous.

Using 8%, ® to denote the corresponding estimators at the tth iteration, and assuming
in the tth iteration 3=, ©'~! are given, we estimate 3¢ using the proximal gradient descent.
That is, we obtain

8£(®t_1, /Btfl)
B

1 -
ek :argmmﬁ§|],@—,@t Ly 15+ nAsll Bl

through letting

oc(e' !, 5
e |

where p, is the component-wise soft thresholding operator so that the ith element of p,(x)
isx; —aifx; > a, zj+aif x; < —aor 0 if |z;| < a. Here n is a step size. To update @, we

IBt = Pn)\g (/Bt_l -

11
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consider

2

+mAel|®l,
F

oL(e', B

.1 _
@t:argm1n92H®—®t Yom 76

where 7; is the step size, and use Soft-Impute (Mazumder et al., 2010) algorithm to im-
plement the optimization. Specifically, let UDV™T be the singular value decomposition of
O —noL(e1, 3" /00, we obtain

©' = USoft,, \o (D)VT,

where Soft,, zg (-) operates element-wise on the diagonal matrix D by replacing Dj; with
(Dii —mAe)+-

Let F(©,8) = L(©,8) — L + Xe||®||« + Ag||B]]1 for |[L| < co such that £(©,3) > L.
In Theorem 3, we establish the convergence of the proposed SIPG algorithm.

To prepare for Theorem 3, define

98(©,8,Q) = tha<><Q<8£(®,B)/8ﬁ,ﬂ —B) + s8] — 18Ih),

9o(©,8,R) = max (9£(©,0)/00,0 — B) + \e(||® — [O].).
I®«<R

Let Q' = F(©',8")/\g, R' = F(®',8")/)e, 05 = C1(2du, + 2d%))c} for C1 > 1,
e = 2dH2 + 2d%2.

Theorem 3 Assume that for all B, B that satisfy ||B]ls < 24, ||Bllcc < a and all ©,O that
satisfy || O ||max < 2a, ||O||max < a,

log{max(p, mn)

BTE{F5(X,Y|©,0)}3> 400\/(ng +dg,)

log(mn) g2,

Lz,
mn

T 2
B 9*L(®,B) B log(mn) B
E ({vec(@)}8[{,6’T,Vec(®)T}T]®2 {wc(@)}) Zd(co + 1)\/(dH2 +d5,) mn {vec(@)}H2 )

where the expectations are taken over X, Y. Select 0 < n < 1/og and select 0 <m < 1/0e.
Then when

vec(®)TE{Fo(X,Y|O,3)}vec(©) > 4\/(dH2 +d2)

= 1 1
; et = { I F(@,B)} W
for C(t) = max{32(R")2 /1 + 16036 (Q")?/(1/m — 0),32(Q")2/n}, we have
P77 -F(©,p) <e

with probability at least 1 — 6(mn + p)~1. Hence F(©T,B7) is the e-optimal solution for
(1) with probability at least 1 — 6(mn + p) L.
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Figure 1: Linear Model : The averages of ||3 — Boll2 and ||© — Og||» of MNAR, EM and
MAR over 50 simulations when p = 50 (left) and p = 100 (right).

The proof of Theorem 3 is given in Appendix G and H. Theorem 3 shows that when
mn + p — oo, with probability approaching 1, the SIPG algorithm indeed converges to the
optimizer described in (1) as long as sufficiently many iterations are carried out. Here the
left hand side of (4) depends on the number of iterations 7'

Remark 2 In Theorem 3, (3) leads to the convezity of the objective function when the
parameter search is implemented in the feasible set of ||B|lcc < a and [|®O||max < a and
satisfies (3). By the definition of Q', R', we have Q' < Q° and R* < R° for t > 1.
Therefore,

C(t) < C = max{32(R%)*/m + 16030 (Q°)*/(1/m — ce),32(Q°)* /n},
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ie, S o{1/C(#)} > TC ™. Thus, a sufficient condition for (4) is

Tz(]{l— 5 01 AA}.
€ F(O°,p8°)-F(©,p)

This indicates that regardless what is the initial value, as long as the convezity on the feasible
set holds, we can always perform sufficiently many iterations to obtain the e-optimal solution
with probability approaching to one. Of course, a closer initial value (©°, ﬁo) to the solution
will require fewer iterations. We point out that our conditions in (§) are very mild and are
weaker than the standard literature. In fact, because the population version of L(©,3) is a
convex function, the expectations in () are naturally nonnegative. In the existing literature
(see, for example, the restrict eigenvalue condition in Loh and Wainwright (2012)), it is
standard to further require the expectations to be strictly positive, i.e., the expectations in
(5) are usually required to be larger than a positive constant. Here, because we allow the
missing probability to go to 1, we relax the strictly positive condition by replacing the positive
constant with a positive value that goes to zero.

5. Simulations

We perform three simulation studies to evaluate the MNAR method. The simulations are
repeated 50 times. We first generate Xjjr ~ Bernoulli(q) for & = 1,...,p independently,
where ¢ = 0.2. Thus, g(x;;) = [[7_, ¢“#*(1 — ¢)*~*ii*. Then we generate Y;; from a linear
model with mean ®;; + ,BOTX,-j and standard deviation 5; We design ®¢ to be a rank 5
matrix with singular values (10,1.8,1.6,1.4,1.2), and B, = (1,0,2,0, -3, —4,5,0,...,0)T.
We set m = n, and vary m,n from 100 to 1600. Furthermore, we generate R;; from
Pr(R;; = 1|Y;;) = expit(Y;; — Y — D), where Y = >_i;Yij/(mn) and D is chosen to
achieve 90% missingness in the data. As specified in Theorems 1 and 2, we select \g =

Cg+/log{max(p,mn)}/mn and A\e = Ce max { V1og(d)/d,log{max(p, mn)}l/‘l\/&} , where

Cg and Cg are constants chosen to achieve similar sparseness of the estimators across all
situations.

In Figure 1, we compare our method with the likelihood method which uses only the
observed data and assume missing at random (referred to as MAR method), and the expec-
tation—maximization (EM) method which imputes the missing outcomes by their expected
values based on the previous estimators. The results show the MNAR method outperforms
the EM and MAR methods consistently over all settings.

In the second simulation, we generate the response Y;;’s from a logistic model with
mean expit(@o;; + Bp Xi;), and we generate R;; from Pr(R;; = 1 | Yy;) = 0.191(Y;; =
1) + 0.011(Y;; = 0), so the missing probability is around 0.90 marginally. Figure 2 shows
that the MNAR method also outperforms the EM and MAR methods consistently under
the logistic model.

Furthermore, we conduct additional simulations when the covariates are row (column)-
specific, meaning that the covariates values are the same for the observations in the same
column (row). We adopt the same simulation setting as the ones used in Figure 1, except
that we change the covariate structure, where the first half covariates are row-specific while
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Figure 2: Logistic Model: The averages of ||3 — Byll2 and ||© — ©¢l|r of MNAR, EM and
MAR over 50 simulations when p = 50 (left) and p = 100 (right).

the last half covariates are colunmn-specific. As shown in Figure 3, MNAR still outperforms
the other two methods under this setting.

Lastly, to evaluate the performance of MNAR in larger sample settings, we generate
data when p = 2, 8, = (1, —2)T and vary m, n from 100 to 12800 with m = n. We compare
the averages of |3 — Byll2 and ||® — O/ of MNAR, EM and MAR over 50 simulations
in Figure 4 . The results show that the MNAR method outperforms the EM and MAR
methods in this setting. The experiment also demonstrates the ability of MNAR to handle
large data sets.
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Figure 3: Row (column) specific covariates: The averages of |3 — 3|2 and [|© — O¢||r
of MNAR, EM and MAR over 50 simulations when p = 50 (left) and p = 100
(right).

6. Real Data Analysis

We evaluate the performance of the MNAR, MAR, and EM methods on the real data from
Yelp. Furthermore, we compare MNAR with a benchmark weighted collaborative filtering
algorithm on the MovieLens (https://grouplens.org/datasets/movielens/) and the
Yelp data.

6.1 Yelp Data Analysis

We apply the proposed method to analyze the data from Yelp, and the data set is available at
https://www.yelp.com/dataset/documentation/main. The full data set is huge, which
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Figure 4: Large matrix size: The averages of |3 — B2 and ||© — ©¢||r of MNAR, EM and
MAR over 50 simulations under linear (upper) and logistic models (lower) when
p=2.
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Figure 5: The AUC differences between MNAR, and the other three models for 20 repeti-
tions under different missing rates.

includes 8635403 reviews on 160585 businesses from 8 metropolitan areas. In combination
with a large number of covariates, it leads to prohibitive computation. Thus, we first select
500 restaurants which received most ratings in Las Vegas. Then we choose 1000 users who
gave most ratings for these 500 restaurants. The resulting Y matrix contains the reviews
from 1000 (n = 1000) customers at 500 (m = 500) restaurants with 90.9% missingness rate.
In addition, each Y;;’s corresponds to a 22 (p = 22) dimensional covariates vector X;;, which
includes baseline features of the ith customer and the jth restaurant such as the restaurant
star, the open date, the customer review count, etc. We further standardize these covariates
by subtracting the mean and dividing the standard deviation. We dichotomize the responses
so that Y;; = 1 if the review score from the ith customer at the jth restaurant is greater
than 3.5. Furthermore, we introduce an evaluation procedure specifically for this missing
not at random data set as follows. We first remove the observed Yj;’s with probabilities
p1 and pg for Y;; = 1 and Yj; = 0, respectively, where py and p; with py # p1 are chosen
so that an additional a100% missingness is introduced into the data. Then we perform
the proposed method on the remaining data, and use the estimation results to predict
the removed entries. We perform the procedure 20 times, and compare the area under the
receiver operating characteristic curve (AUC) of the MNAR, MAR, EM and MIMI methods
proposed by Robin et al. (2020) under the settings with @ = 0.011,0.021,0.031,0.041. In
the implementation, we use the Monte Carlo method to approximate the integration in
the loss function, while the distribution of X;; is estimated empirically. Because ﬁTXij
contributes to the conditional distribution of Y;;, we re-estimate the distribution of BTXij
when a new 3 is obtained. At the tth iteration, we sample M copies of ,BtTXij from the
empirical distribution, and approximate the integration as

m n
(mn) ™Y N (Y, @45 + BT X ) ~ /f(Yija ©;; + B X)g(X)dX.

s=1u=1
The penalty parameters in the four methods are selected by grid search, i.e., under each «,
we generate a missing matrix R to tune the penalty parameters which yield largest AUC
for the four methods.

We plot the 20 AUC differences between MNAR and the other three methods in Figure

5. In addition, we plot the average AUCs of the four methods over the 20 repetitions in
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Figure 6: The means of AUC for the MNAR, EM, MAR and MIMI based on 20 repetitions

under different missing rates.

Figure 6. The results show that MNAR clearly outperforms all competing methods with
the largest AUC consistently across all settings.

6.2 Comparison with the weighted collaborative filtering method

Weighted collaborative filtering (WCF) is arguably the first approach that tackles the prob-
lem of nonignorable missing by assuming the missing data are the places where most nega-
tive feedbacks are expected to be found (Hu et al., 2008). We compare the performance of
our method with that of the WCF method proposed in Hu et al. (2008) on MovieLens 1M
data set, which includes one million ratings from 6040 users and 3952 movies. The data set
also contains information on the age of a user and genre of a movie, which we use as the
covariates in the MNAR method. There are 7 age groups and 302 different movie genres,
so the covariate size is p = 7 x 302 = 2114.

The missingness rate is over 95.7% in the full data. To evaluate the two methods, we first
remove the observed Y;;’s with probabilities p; and pg for Y;; = 5 and Y;; # 5 respectively,
where py and p; (pp # p1) are chosen so that an additional 1% missingness is introduced
into the training data. We evaluate the performance of the two methods using the expected
percentile ranking proposed by Hu et al. (2008). Specifically, after obtaining the predicted
ratings of all the movies by all the users, we obtain the percentile-ranking r,; of movie ¢ in
all movies (including both rated and unrated movies) for user w.
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Now let V!, be the observed rating of movie i by user u in the testing data set. Then
the expected percentile ranking is calculated as

tg .
2 i Yuilui

F=

Note that a smaller 7 indicates better performance. The same procedure is repeated 20
times, and we provide the average of the 20 7’s as the final performance measure.

For the WCF method, we obtain the weights using the BM25 function (Christopher
et al., 2008) with two tuning parameters b, k; selected as b = 0.75 and k; = 2. This
selection gives us the best performance among those recommended in Christopher et al.
(2008) (b = 0.75 and k; € [1.2,2.0]). We also plot the mean of the expected percentile
ranking over different choices of factors on 20 testing data sets in the left panel of Figure 7.
The results show that WCF is sensitive to the selection of the number of factors with the
optimal number of factors being 16 among all selections. Moreover, we plot the boxplots of
the expected percentile rankings over the 20 testing data sets from the MNAR and WCF
methods in the right panel of Figure 7. The results show that MNAR outperforms WCF
with significantly smaller expected percentile rankings.

We also apply MNAR and WCF on the Yelp data set discussed in Section 6.1. We again
plot the mean of the expected percentile ranking over different choices of factors in the left
panel of Figure 8. The results show that the WCF is sensitive to the selection of the number
of factors with the optimal number of factors being 4 among all selections. Moreover, we
plot the boxplots of the expected percentile rankings from MNAR and WCF methods in the
right panel of Figure 8. The results show that MNAR outperforms WCF with significantly
smaller expected percentile rankings.
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Figure 7: MovieLens data analysis: Left: The expected percentile ranking versus the num-
ber of factors from the WCF method. The expected percentile ranking decreases
when the number of factors is less than 16, and starts to increase when the num-
ber of factors is greater than 16. Right: The boxplots of the expected percentile
rankings from MNAR and WCF. MNAR has significantly smaller expected per-
centile rankings.
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Figure 8: Yelp data analysis: Left: The expected percentile ranking versus the number of
factors from the WCF method. The expected percentile ranking decreases when
the number of factors is less than 4, and starts to increase when the number of
factors is greater than 4. Right: The boxplots of the expected percentile rank-
ings from MNAR and WCF methods. MNAR has significantly smaller expected
percentile rankings.

7. Related work

Matrix completion problems have caught researchers’ attention in recent years. The earlier
works in this area do not consider any noise in the response (Candés and Recht, 2009;
Recht, 2011), and only study the theoretical properties of perfect matrix completion. Noise
issue is later taken into account in Candés and Plan (2010); Koltchinskii et al. (2011);
Rohde and Tsybakov (2011); Negahban and Wainwright (2012), although they still do not
include covariates or study missingness mechanism. In more recent works, nonuniform
missing mechanism has also raised attention (Srebro and Salakhutdinov, 2010; Negahban
and Wainwright, 2012; Klopp, 2014; Cai and Zhou, 2016; Cai et al., 2016; Bi et al., 2016;
Mao et al., 2019). In addition, covariate information is taken into account. For example,
Abernethy et al. (2009); Xu et al. (2013); Chiang et al. (2015); Mao et al. (2018) consider
additional finite dimensional covariate effect; Zhu et al. (2016) cast the matrix completion
problem in a sparse regression setting and estimate the high dimensional parameters with
the conventional lasso type penalty; Robin et al. (2018) consider matrix completion with
high dimensional covariate in the generalized linear model when the loss function is convex.
Nevertheless, even the most sophisticated missingness feature studied in Mao et al. (2019)
and the most flexible covariate structure studied in Robin et al. (2018) still assume a specific
missingness mechanism model and require that the missingness does not depend on the
potential response value given the covariates, i.e. they require modeling the missingness
mechanism and they are limited to the framework of missing at random. These assumptions
conveniently facilitate the parameter estimation, because the missingness does not affect the
convexity of the loss function, and the estimation consistency can be easily achieved when
the proportion of missing is not overwhelmingly large. However, this is restrictive and
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is somewhat unrealistic in many customer evaluation system such as the Yelp restaurant
evaluation problem considered here.

Missingness is usually classified into three categories, missing completely at random,
missing at random and missing not at random. The first two classes have received extensive
studies and a vast amount of literature is available. However, the third class, which is
sometimes also referred to as informative or nonignorable missing, is much harder to treat
and has not been well studied until very recent years. Some attempts are made, see, for
example, Zhao and Shao (2015); Miao and Tchetgen Tchetgen (2016). The nonignorable
missing problem has also caught attention in the collaborative filtering literature. Marlin
and Zemel (2009), Herndndez-Lobato et al. (2014), and Liang et al. (2016) discuss the
collaborative prediction and ranking with nonignorable missing data while assuming the
missing distributions are given; Hu et al. (2008) and Pan et al. (2008) tackle the problem
of MNAR data in the case of implicit feedback-data; and Steck (2010) discusses how to
evaluate the algorithm under MNAR settings. But none of these works directly predicts
the product rating under the MNAR setting for the unknown missing distribution as we do,
and none of them is in the high dimensional covariates setting as we consider here. Our work
is in the third category, with the additional complexity of ultra-high dimensional covariates.
To handle the nonignorable missing, we establish a penalized pseudo-likelihood framework,
where despite of the goal of predicting Y;; based on the covariate information X;;, we
work with the reverse relation of X;; given Y;;, hence bypassing the difficulties caused by
the nonignorable missingness. However, in the ultra-high dimensional covariate situation,
this leads to a non-convexity issue even if the original full data likelihood is convex. We
address and overcome these issues caused by the ultra-high dimension by simultaneously
incorporating the low-rank restriction on the baseline evaluation matrix and the sparseness
assumption on the potentially high dimensional covariates. Moreover, we develop efficient
computational algorithms to obtain the low-rank and sparse parameter estimators. To the
best of our knowledge, our work is the first complete framework to allow the missingness
in the matrix to depend on the evaluation value that is itself missing, while simultaneously
considering ultra-high dimensional covariates. The penalized pseudo-likelihood strategy
may also have wide application in supervised learning settings when outcomes are missing
with unknown mechanisms, or more generally when the sample is biased due to various
sampling issues. We aim at tackling the complex case where both the high dimensional
covariate effect and matrix completion are of interest. The proposed method is easily
generalizable to simpler settings when only the covariate effect is of interests or only the
matrix completion with low dimensional covariate effects is considered.

8. Conclusion

We have considered a matrix completion problem where not only the missingness mechanism
of the entries in the matrix belongs to the missing not at random context, but also the
covariate information is taken into account. The diverging size of the matrix is regularized
through a rank constraint enforced through penalizing its nuclear norm, and the diverging
dimension of the covariates is regularized through a sparsity assumption imposed via the L
penalization. It will be of interest to investigate if other practically justifiable constraints
can be used to replace or enrich these assumptions. It will also be of interest to investigate
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if better procedures can be developed if one is willing to make more concrete assumptions
on the missingness mechanism. These are challenging problems but can be rewarding to
study.
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Appendix

A. The Expression of Notations in Section 3.1

To facilitate the theoretic derivation, we write out the explicit expression for some important quan-
tities. Recall the definition of z;; defined in Section 3.1. Now

9L(®,B)
00
e fo(Yij, 04 + B8Xi;) [ fal U,Gij—&-,@TX)g(X)dX} ]
_ 1 R;; J J J y
) ;; ! {f(YzJaQUJFﬂTXij) [ f(Yi, ¢j+BTX)g(X)dX /
and
°L(©,8)

Ovec(O© )Bvec(('-))T

= DI

=1 j=1

( 137611 +/6TXL])
(}/U7®7j +/6 ij)

3
(}/Ua 61.7 +5 XU) f

{f22 117673 +ﬁ Xz])

[ foa(Yi5, O35 + BT X)g(X)dX MRRERGRCE + B8 X)g(X)dX}? veo(z:)%2 | |
J F(Yij,©45 + BT X)g(X)dX {ff s ij+,6TX)g(X)dX}2

Further, we have

9L(©, B)
9B
_ Sy {fz( 50y +8"Xy) [ (Y, 0y +6TX)g(X>XdXH
i=1 j=1 Y f(Yzj7®1j + BTXU) Y ff i ij +6TX)9(X)dX 7
°L(® )

— - — [ f22( 7, )(-)’L +ﬁ Xz ) f ( 7 ,G')l +ﬂTX1 ) 2
- _ 1 Rz J J J) J J J X;@
(mn) ; g ! { f(Y;J’ 61.7 + IGTXU) f ( R G')'L] + ﬂTX”) } ’

)

J F22(Yij, 045 + BT X)g(X)X®2dX  {[ fo(Vyy, ©5 + BT X)g(X)XdX}
[ (V3,05 4+ BT X)g(X)dX {f F(Yi, @4 + 5TX)g(X)dX}2

and

°L(©,8)
dvec(©)98"

= —(mn)7! ZZ ij f2Ysy, O+ B Xig) _ [3(Yiy, ©4 + 5 Xyy) vec(zi;) X
i=1 j—1 f(Yij, ©;; "‘BTXij) [2(Yi5, 0, +,3TXij) /

{f Ja2(Yij, ©3; + BTX)g(X)vee(zi;) X dX
[ f(Yij, 0 + BT X)g(X)dX

A{J £(Ye, 055 + BT X)g(X)dXvec(ziy) H [ f2(Yes, O + BT X)g(X)XdX}T
{ff szeij +ﬁTX)g( )dX}
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Let M = (vec(®)T, 81T, we can write

0L(8,8)

o = )T YD Ry [8(Yi, X1, 8) — E{S(Yiy, X510, B)[Yiy)].

i=1 j=1
Furthermore because

f22(Yij, 45 + BT Xyj)  f3(Yej, 045 + BT Xy)
F(Yi,©45 + BT Xy5)  f2(Yiy, ©45 + BT Xy5)

H(Yijy Xija @7ﬂ) = { } [{Vec<zij)T7X;5'}T]®27

we get
g [ Fae(Yiy @4+ BTX)g(X){ (vee(z,y)T, XT)T}H2dX
E{H(Y;;,X5|©,8)[Yi;} = 7. 05, + AT R)g X)X
(Y, 0, + BTX) voe(z: T XTYT192]y,
+E{f2%7®ij+ﬁTX){< ec(z;)T, XT)T}E2|Y;; ¢
and
82L(©, A
7@1\/I(6MT) = (mn) 1;;% (H(Yij,Xm@,m—E{Hmj,xmta,ﬂ)mj}
FE (S0, 10,0115} - [B(S0, X0, 0V, 1 ). 5)

Now for any functions hq(R;;), ha(Yi;, X;;), because X;; and R;; are independent given Y;;, we have
E{h1(Rij)ha(Yij, Xij)[Yis} = E{h1(Ri;)|Yi;} E{h2(Yij, Xi5)|Yi; }-
We also have
E(R;; [H(Y;5, X510, 8) — E{H(Y;;, X0, 8)|Y;;}]) = 0.
Combining with (5), we obtain that E{9?£(©, a)/O0MOMT} is semi-positive definite. That is
min[E{0*L(©, ) /JOMOMT}] > 0, (6)
where apmin(A) is the smallest singular value of matrix A. In addition, we write

eT aé?](ea 5)
¥ 0B0(©,2;;)

{f22(yij7 0, +8'Xi;)  f3(Y:;, 05 + 8" Xy;) } X

Wir(©,8)

f(Yi;,0: +BTXy;) Y5, 05 + B Xy)
_ {f fo2(Yij, ©i5 + BT X)g(X) X1,dX
[ f(Yij, 0 + B X)g(X)dX

AL (Y5, 04 + BTX)g(X) Xy dXH [ (Y, ©i5 + B X)g(X)dX}
{f f(Yij, ©45 + ﬂTX)g(X)dX}
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B. Some Lemmas

Lemma A.1 Suppose the independent random variables X;,i = 1,...,n are bounded in the interval
[a,b] with mean p. Then X; is a sub-Gaussian with parameter o = |b — a|. Further,

Pf{|Z(Xz‘ — = t} < 2€XP{—W}~
i=1

Proof: This is the direct consequence of Example 2.3 and Proposition 2.1 in Chapter 2 of Wainwright
(2019).
The lemma shows that a bounded variable is a sub-Gaussian distributed random variable.

Lemma A.2 Consider the independent random wvariables Y1, ...,Y, such that there are infinitely
many constants u;, vs, u; <Y; <y, i =1,...,n. Let Z = supgcr Z?:l t;Y;, where T is a set of
vectors t = (t1,...,t,) and 0 = supger{d o t2(v; — u;)?}Y/? < 0o. Let myz be the median of Z.
Then for § > 0, we have
Pr(|Z — mz| > 8) < dexp{—62/(40%)}. (7)
Furthermore
|E(Z) =mz| < 4Vmo
var(Z) < 1602 (8)

Proof: This lemma is the Corollary 4.8 in Ledoux (2001).

The lemma demonstrates that a random variable with bounded variation has similar tail property
as a sub-Gaussian distributed random variable does. It also provides bounds on the deviation from
median and the distance between mean and median.

Lemma A.3 Let W' be independent d, x d. zero mean random matriz such that |[W'|,, < M,
and define

o7 = max {||[E(W'W™)|op, | E(W W) 0 }
and 0? =" 02. Then we have
Pr (H ZWiHop > t) < d,d. max [exp{—t*/(40°)},exp{—t/(2M)}] .
i=1
Proof: This lemma follows Lemma 7 in Negahban and Wainwright (2012).

Lemma A.4 (Hoeffding bound). Let Xy,...,Xn be independent centered sub-Gaussian random
variables, let K = max; || Xiy,, where || Xil|y, = supy>; E-12E(X|*)YE. is bounded for the sub-
Gaussian random variable. Then for t > 0, we have

N t2

i=1

Proof: This lemma is from Proposition 2.1 in Wainwright (2019).
The lemma demonstrates the tail property for the operation norm of the sum of random matrices.
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C. Lemmas for Theorem 1

Define

{BER:IBllIBI1/183 < 7~ {mn/log{max(p,mn)}}'/},
B(D) = {AgeCMllAslz< D, llAgl: < D*/yy/mn/log{max(p,mn)}, | Al < a}.

2
2
I

Lemma A.5 Assume Condition (C1) and (C3) hold, and let ® be the solution for (1), then

0L(©,8,)  IL(Ov,By)
as 1))

lloo < Qadw(mn)_1

Proof: First note that by the mean value theorem, we have

OL(O,B,) 9L(Oy,B,) i 2L(07,8) o
5 o) ag 0L — (mn) 1;; 86[)] LS ZU0> (2zij,© — Op),

where ©* is the point on the line connecting © and ©®q. Hence

85(@,60) _ a£<907/60) ”
0B o

= bup|mn ZZR’J k(0% By)zij,© — Op)]

1=15=1

= sip |(mn)71<ROWk(@*7/@0)7@ - O)|

IN

()~ sup [[vee{R. o Wik(©", 8)}1/1© — ©ollmax
< 2adw(mn)~t.
The last inequality holds by Condition (C1) and (C3). This proves the result.
Lemma A.6 Assume Conditions (C1), (C4) and (C5) hold, there is a constant w > 0 such that

9L(©0, By)
B

with probability at least 1 — 2{max(p, mn)}~

oo < v/wlog{max(p,mn)}/(mn) + (mn)~'dpx

I
1
Proof: Recall that X* is the n x m matrix with the (,7)th element X;;i, and S2(Y;;,X;;|©, B) is

the partial derivative of —log{f(Y;;, ®;; —|—,8TX”)} with respect to ©;; —l—,@TX”. Let S2(Y,X]|©,3)
be the n x m matrix with the (4, j)th element S5(Y;;,X;;|0, 3), we write

sup | {M(@O"BO) }k

k B
_ sup\ mn) ZZ (Yij, ©Oo;j +ﬁ§Xij)Xijk [ £2(Yij, ©0i; + By X)g(X) XpdX |
i=1 j=1 f }/:Ljﬂeoij +ﬁngj) ff 7,]7902']' —I—/BEX)Q(X)dX
= sup\ mn) ZZRUSQ (Yij, Xij, ©0, Bo) Xije — Rij E{S2(Yij, X|®0, By) Xk|Yij }|
=1 j=1
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n m

< sup\mn 12231352 Yij, Xij1®o, Bo) Xijkl

=1 j=1
m

n
+sup|mn 1ZZR”E{52 Yij, X[®q, By) Xi|Yij }|
1=1 j=1

n m

< Sup\mn 1ZZR2j52 zgyxij|®07/60)X7ijk|+(mn)71dEX

=1 j=1

Here we used Condition (C4) in step 4 and the last step. Now because S2(Y;;, X;;|@0, 8y) is sub-
Gaussian and X, are bounded as assumed in Conditions (C5), Esi; = R;;S2(Yi;, Xi;|@0, Bo) Xijk
is a sub-Gaussian random variable, by Lemma A.4, we have

Pr | [(mn)™! ZZESUI >t | < 2exp(—2mnt?/w)
i=1 j=1

for some constant w > 0. Therefore, we have

Pr sup\ mn) ZZR”SQ 1> X700, Bo) Xijr| >t

1=1 j=1

< pPr(/( ZZEsmbt

i=1 j=1
< 2exp{—2mnt?/w + log(p)}.

Let t = /wlog{max(p, mn)}/(mn), we get

Pr Sgpl(mn)’lzz RijS2(Yij, Xi51©0, Bo) Xiju| = /wlog{max(p,mn)}/(mn) | < 2{max(p, mn)}~".

Plug in the above result to (9), we get

8‘6(6(% ﬁO)
op

with probability at most 2{max(p, mn)}~!.

> /wlog{max(p, mn)}/(mn) + (mn) ‘dpx

‘ o0

Lemma A.7 Let N(§) be the d-covering number of B(D). Then there is a constant ¢; > 0 such
that

log{N ()} < 6—20§D4mn/72.

Here, 6-covering number is defined as the number of disks with radius § and center in B(D) needed
to cover B(D).

Proof: Define Bi(D) = {Ag € RP||Agl|l1 < D?*\/mn/log{max(p,mn)}/v} and let N(8) be the

§-covering number of By (D). We have B(D) C By(D) and N(§) < N(6). Now by the Sudakov
minoration (Theorem 5.6 in Pisier (1999)) for a p-dimensional vector G containing independent

identically distributed standard normal random variables G;,7 =1,...,p
= 3
log{N(§)} < <E ( sup (G, Aﬁ>>
0\l apll<D? {mn/log {max(pmn)}}1/2 /7
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< EE(m[ax |Gi|)D?\/mn/log(p) /v
ig(l
< gchQ\/log \/mn/log

= gch2\/mn/’y,

for some constant ¢; > 0. The second line holds by the duality of Ly and L., norm. The third line
holds because E(sup;c(y,,) |Zi]) = Op{/log(n)} for an independent identically distributed sequence
of normal random variables Z1, ..., Z,. Therefore, we have

log{N ()} < 6—20§D4mn/72.

In the following we first show for ® and B in the feasible set that ||€)||max < a and ||[~3||Oo <a,
we have

sup [B"Fa(X,Y|O©,8)8 — BT E(R;E{S3(Vj, X0, B)X;; X[V}
BEB(D)
—Ri; E{S2(Yij, X510, B)X; Vi 19?8

is upper bounded by a O(1) constants. Then we use the peeling arguments (Negahban and Wain-
wright, 2012) to show the boundedness of

sup |8TFg(X,Y|©,B)8 — BT E[R; E{S3(Yi;, X510, B)X ;X 5|V}
Bec(v)
—Ri; E{S2(Yij, X410, B) X5 Yi; 124 8].

Lemma A.8 and Lemma A.9 are the auxiliary results to establish the first relation.

Lemma A.8 Assume Conditions (C1), (C5), (C6). Let § = D/, where € is an absolute constant,
and ¢y is defined in Lemma A.7. Let 3 € B(D), and B k=1,. .. N(9) be a §—covering of B(D) in
Ly norm. By definition, given an arbitrary B € B(D), there is some index k € {1,...,N(0)} and
a difference matriz Ag with ||Ag||2 < & such that 3 = B* + Ag. Recall that for @ and B in the
feasible set that ||©|max < a and ||,£’)'HOO <a

a"Fs(X,Y|©,8)b

Zza Rzg H2 237Xij|é7B)XinT E{H2( 179 lj‘é7/8)X XT| }

i=1 j=1
+E{S2( 137X11|@ IB)XZ]X ‘Ym} E{SZ( i ij|éaﬁ)xijyij}®2]b>~

Then there are positive constants co,c3 such that

—Ri; E{Sa( za»Xz‘j|@ B)X; ;1% 8"
52y 32(dp, + dSQ)a c
vmn
4exp (—02D2mn) ,

IN
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Pr (klsuPN(5 |ﬂkTFB(X,Y|(:),ﬁ)(ﬂ — 8% - B"TE[R;;E{S}( ljvxij|éa/@)xijxgj“‘yij}

—R;; B{S:(Yi;,X;|©, B)X;|Y:; }2%(8 - BY)|
o, 04(dp, + d%,)a*ch
2O T )

< dexp (—03D2mn) .

Proof: First we write

18" Rij[Ha(Yi, X510, B)X; XE — E{H,(Y;;,X|®, B)XXT|Y;}
+E{S3(Yi;, X|©, B)XXT|Y;;} — BE{S2(Y;;, X|©, B)X]|Vi; 128"
sup{2d 1, [| 8" (| oo | X511 118" 1o X511 + 2%, 18" o X512 118" oo X511}

ij

= 2(dH2 + d%z)(aco)Q.

IN

Also we have

18" Ry [Ha(Yij, X150, B) Xy XL — E{H(Y:;,X|©, B)XX"|Y;;}
+E{S3(V;1,X|©, B)XX"|Y;;} — E{Sx(Yi;, X|®, B)X|;;}%%|8"|
< SHYP{2dH2||ﬁ 211X 12118 e 1 X511 + 2d3, 118" 1211X5112118* [l oo || X5 111}

= 2(dp, +d§,)(act)D,

by Conditions (Cl) (C5) and (C6). We now use Lemma A.2, where we treat each summand
in 8" Fg(X Y|©,3)8" as Y; in Lemma A.2, and set (u;,v;) = {—2(dm, + d3 LJacy D, 2(dw, +

d3,))aciD} and (u1i,v1:) = {—2(dm, + d3,)a*c}, 2(dn, + d3,)ac}}. Consider 7' “to contain only
one vector t, where t is the mn dimensional vector with element (mn)~!. Then Z in Lemma

A2 is ﬁkTF,@(X,Y|é:),,£~")'),6]C and we set o in Lemma A.2 (7) as 0 = [3;0, >0, (mn) > {4(du, +
clsz)ach}Z]l/2 = 4(dpg,+d3, )aciD/+/mn, while we set o in (8) as 01 = [ZZ y gy (mn) " {4(dp, +
d3,)a? 2¥2)V? = A(dy, + d3,)a*c§//mn. Let mp be the median of Bk Fﬁ(X,Y|®,,6)/6 , we have

2 2.2
1B* Fs(X,Y|©,8)8" — 8" E{Fs(X,Y|®,8)}8"| > &+ 32(du, + d,)a %)

Jmm

32(dp, + d%,)a’c}

( (
< Pr (lﬁ’“TFa(X,Y@,E)B‘“ —mp} + 8" E{Fs(X,Y|®,B)}8" —mp}| > 6% + T
LT ~ o~ s 32(dm, +d3,)a*cq  16y/7(dm, + d3,)a*c
< (w Fa(X, ¥[8, )" — mp}) > 5+ LD (e )
< Pr(|8" Fa(X,Y|0,8)8" — mp| > o°)
<

e —mnd?
X .
P\ 64(dn, + &2, )2a2ciD?

Now for 8* € B(D), k=1,...,N(4), we have

Pr{k S 8" Fa(X,Y|0,8)8" - 8" B[R, E{S3(Yy, X;;|0, B)Xy; XY}

=1,...,
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—Ri; E{S2(Yi;, X510, B)X,;|Vi; }¥48F| > 6% +

32(dp, + d% )a c?
vmn
—mné*
< 4 log{N
- eXp{64:(dH2 + d3,)?a2c D? +log{ (6)}}

—mnd? 9
< 4 —2D* 2.
= e { 6i(dm, T+ &, Faraip? T @l }

Now because § = D/, we can select v sufficiently large so that §*{64(dn, + d%,)?a*cgD?} " >
18672¢3D* /42, Thus we have

Pr{k_lsupN(é)ﬁ Fo(X.Y|0,3)8" - 8" B(Ry; E{S3(Y,;, X8, B)X,; X[ Vi)

~ o~ dm, +d%
Ry B{Sa(YVig, Xy 8, B) Xy Vi 1528 3 62 4 D2 £ ) CO}

Jmn

< 4dexp (702D2mn) ,

where ¢y = —9c2¢2y72. Using the similar argument we can show that there is a c3 > 0 such that

Pf{k_lsuPN(é) B Fu(X,Y)(8 - B*) — B E{R,;E{S3( Y, X510, B)X ;X 1|V}

—Ri;B{S2(Y;;, X510, B)X,;]Y;;}22}(B — B))
64(dm, + d3,)a*c]
Vvmn }

<4exp (703D2mn) .

> D?/¢% +

This proves the result.

Lemma A.9 Assume Conditions (C5) and (C6) hold, § = D/¢. Let Fg(X,Y|®, B) be as defined in

Lemma A.8. Define Dg(D) = {Ag € RP|||Agll2 <0, [|Ag|1 < 2D2\/mn/log{max(p, mn)}7v, |Agllee <
2a}. Then

sup  |ARFa(X,Y|©,8)Ag| < 2(dp, + d, )25
Ap€Dp(D)

Proof: First note that

sup  (mn) IZZAgHQ 5, X510, B) X XL Ap < dpy, 36>,
ApeDg(D i=1 j=1

and first inequality holds by Conditions (C5) and (C6).
Follow the same arguments we have

sup ZZATE{H2 Y5, X410, B)X; XL |Vij}Ag ¢ < dpp, 3o,
ApeDg(D) i=1 j=1

sup (mn)~ ZZAEE{SZ( V5. X510, B)Xi; XE|Yi Ag ¢ < d¥,c262, (9)
AﬁG'Dﬁ(D) i=1 j=1
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and

sup  { (mn) 1YY ARE{S:(Y:, X510, B)X;|Yi; )52 Ap b < d2, 262 (10)
ApeDg(D) i=1 j=1

Hence

sup  |ASF5(X,Y[O,8)Ag| < 2(du, + d3,)c3d.
ApeDgD)

Lemma A.10 Assume Conditions (C1)-(C6) hold. Let § be as defined in Lemma A.9. For B3 €
C(v), we have

BTF5(X,Y[©.8)8 - B" E[R;; E{S3(Yi;, X;5|0, B) X, XYy}

—Ri; B{S(Yy, X0, B)X ;i %% 8|

min (E[Ri; E{S2(Yij, X0, B)X ;X 5|V}

—Ri; E{S3(Yi, X510, B)X;|Yi;} %)) /2]BII3 + 160(dn, + d,)a’c}//mn

Y

with probability at most 1 — exp[—Clog{max(p, mn)}| for some positive constant C.

Proof: For any 8 € B(D), there is a k € {1,...,N(8)}, so that Ag = 3 — 8" satisfies || Agly < 4,
|Agl1 < 2D?\/mn/log{max(p,mn)}/v, and ||Ag|le < 2a, hence Ag € Dg(D), where Dg(D) is
defined in Lemma A.9. In addition,

BTF5(X, Y|, B)8 — BTE[R;; E{S3(Yi;, X|©, B) X, X[ |y}
—Ri; E{Sy(Y:j, X510, B)X;;]Y;;}%%]8
= (8" + Ap)"Fs(X,Y|0,8)(B" + Ag) — (B" + Ag) E[R;; E{S3(Yy;,X,;|©, B)X;; X |Vi;}
—Ri; E{S:(Yij, X;510, B)X ;Y5192 (8" + Ap)
= B Fs(X.Y|©,B)8" — (B4 B[R, B{S3 (Y, X;5]©, B)Xy; X[V}
—Ri; E{S5(;5, X510, B)X;|V;; 1% 8
+26" F(X, Y10, 8)Ap, —(8) B[Ry B{S3 (Y, X150, B)Xi; X[V}
—2Ri; E{S>(Yi;, Xi5]©, B)X,;|Yi; 1% Ag
xT =S A A xT 2 =S G T
+AgFs(X,Y|[0,8)Ag — AgE[R;; E{S5(Yij, Xi;|©, B)X:; X;;|Yis}
~Ri; E{Sy(Yij, Xi5,0, B)X;|V;; 1% Ag.
Hence by Lemmas A.8 and A.9,
S 8TFs(X,Y|©,8)8 — BT E[R; E{S;(V;;, X5|©, B)Xi; X[ |V}
—Ri; E{S:(Y;, X450, B)X;]Yi; }*% ]
P 18T Fa(X. Y16, B)8" - (8T EIR E(S}(¥iy, Xy16, B, X5 1Ys )
—EB{S,y(Y;5, X510, B)X,;Y;; 127 8"

=1,...,

IN
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—Ri;E{S(Yi;, X0, B)X;;|Yi; 192 Ag|

+ sup  |AgF(X,Y]O,B)Agl+ sup  |ARE[E{SA(Vi;, X0, )X, X[V
ApeDp(D) ApeDa(D)
—E{S:(Yi;,X;5|©,8)X ij|Yij}®2]Aﬁ|
160(dp, + d3,)a*cd
< 362+ W 2 + (2d g, cf + 2d%,c§)0° + 2d%, c§6°
160(d g, + d3, )a’cd
2 2 2 2 2
= (3+2dH260+4d8260)D /§ 2\/%
160(dp, + d%
_ pypejer 4 200 £ ds )’ (11)

Jmn

with probability at least 1 — bs{exp(—boD?*mn)}, where by, b3 are constants not depending on D,
and

Ds =3+ 2dp,c} + 4d%, cf.

The second to the last equality holds by Lemma A.8, A.9 and (9), (10) in Lemma A.9. Now note
for B € C(v) with ||B||cc = b for a constant b < a, we have

! 1
1813 > bvnﬂnlJ ogtmax(p mn)} mg||2\/ og{max(p, mn)}

mn

I

which implies ||8]|2 > byy/log{max(p, mn)}/(mn). Define u(b) = b*y2log{max(p,mn)}/(mn). Fur-
ther let

@08(0, B) = amin(E[R; E{S2(Y;;,X5|0, B)Xi; XL |V} — Ry E{S2(Yij, X510, B)X,;]Yi;152)),

a= aog(é,B)EQ/D5 and £ > \/Ds/agg so that o > 1. Define
Si(b) = [BE€C)IBlls = b,
a=1(b) < 81> < y/alp(®), and
18111 < b~ al u(b)y~y/mn/log{max(p,mn)}].

Then S;(b) € B(\/a!u(b)) and {B : ||B]|e = b} NC(7y) C U, Si(b).
For B8 € S;(b), we have

160(d g, + d3,)a’c} 160(d g, + dg, )a’cd

20p(®. BB + T 5 agp(B,Ba () +
_ 160(d s, + dz,)a”c}
= apga”a'u(d) + i
160(d g, + d3, )a? c0

_ l 2

Therefore,
Pr{|8"Fs(X,Y|®,B)B - B B[Ry E{S3(V;, X510, B)X;, X[ |V}
—Ri; B{S(Yyj, X0, B)X;;Yi;}%%8|
> Qmin (£ [RZJE{SQ( i ij|®»ﬁ)X XT|YZJ}
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160(dp, + d3,)a*c]
vmn

Ry E{S:(Yiy. X0,|®, BYX |V} 22813 + Becl >}

< [ e {I"Fa(X. Y18, )8 - 57 Bl BISHY X418, BX, X V)
—R;; E{S>(Y3j, ij|(:) B)Xij‘}/i’}®2] B
Zamin( [szE{SQ( K z]|®vﬁ)X XT|Y;j}
_ 160(dg, + d
R BV, X1, X V) 3+~ LT g i i = o
< [y re{lm a0 VI8 B8 - Tl BUSHY X, 18X, XEIY,)
Ry BV X, 8,51, 1Y)
> amin (E [RZJE{SQ( U’XU’@ ﬂ)X’L]ng| }
. 160(dpr, + d3,
RSV, Xy 6, B)X v, ) ) + 1 WS S g e s}
= ZPr{wTFﬁ(X Y|©,0)8 — BT E[R; E{S3(Y;j, Xij]©. B)Xi; X[V}
=1
o 160(dr, + d3, .
RS, X8, 8 V5 12181 2 s )2 4 O LIS e )
< by D fexp(—boodp(b*mm)]
=1
< b3y _[exp(—bolu(b*)log(a)mn)]
=1
. exp(=balog(a)u(tymn)

? T — exp(—balog(a)u(b*)mn)
< exp[—Clog{max(p, mn)}],
Where b* is a point on the line connecting 0 and a. The fourth line holds by (11) with D =

v alu(b*), the fifth line holds because a! > llog(a) for @ > 1. The last equality holds because
u(b*) = b*2 v?{max(p,mn)}/(mn). This proves the result.

Lemma A.11 Assume Conditions (C5) and (C6) hold, suppose Ag = ,@ — By, let © =0 and
B = B" a point connecting 3 and By, then there is a o1 > 0 such that

with probability at least 1 — 2max(p, mn)~", where o1p = 32c§a®(dp, + d%,) as defined in Theorem
1 and E{Fg(X,Y[0©,8%)} = E{F5(X,Y[0,8)}o_5 s—p-

Proof: First note that for Ag with ||Ag|ls < 2a, we have
((Ap) " Rij Ha(Yi5, X510, %)X X5) T Al
< {12l maxl X511} Ha (Yij, X0, 87) < Acja’dn,,
Similarly,
|AER”E{H2( ZJ7XZ]|® B )XZJX ‘YU}AH‘ < 400a dpy,
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[(Ap) Ry E{S3(Yi;, X510, )X X5) Vi HAp)| < 4cdad?,, (12)

and
(Ap) " Ri; E{S5(Yi;, X510, 87X 5| Vi )22 (Ag)| < dcfa’d3,. (13)
Hence we have each summand in AEFg(X, Y|, ﬁ*)Ag—AgE{Fg(X, Y|O, B%)}Ag is in the range
of {—16(cka*dp, + cda*d%)),16(c3a’*dn, + c3a?d%,)}, and in turn is sub-Gaussian with parameter

o?p = {32(ca’du, + cfa’d%,)}? by Lemma A.1. Here the expectation is taken over X and Y.
Therefore, by Lemma A.1, we have

Pr{|AJFa(X,Y(0,8)A5 — AFE{Fs(X,Y|0,3)}Ag| > t}
~ Pr {|mnALT3F(X7Y|(:),B)A5 — mnALE{Fs(X,Y|0,B8)}Ag| > mnt}
(mn)?t? }

< 2expq —
- p{ 2mno?

9 mnt?
— ex — .
P 20% P

Let t = o1p+/2log{max(p, mn)}/(mn), we obtain

Pr {|A:£F,@(X,Y|(:),,6*)A5 - AEE{Fﬁ(X7Y|(:),B*)}Aﬁ| > 0171/ 2log{max(p, mn)}/(mn)}
< 2max(p, mn) .

Hence we have

AgFﬁ(X7Y|(:),,6*)A5 > AEE{Fﬁ(X,Y\(:lﬂ*)}Ag — 017/ 2log{max(p, mn)}/(mn),

with probability at least 1 — 2 max(p, mn) 1.

Lemma A.12 Assume Condition (C5) and (C6) hold, suppose Ag = B—B,. Let Ag > 2||8£(@,ﬁ0)/8ﬂ||0p
and o1p be as defined in Theorem 1. Then either

Agllz < {omin(E[R; B{S3(Y:;, X0, B7)X ;X 5[V}
—Ri; B{S2(Yij, X150, B)Xy;|Yi;}¥%))} /2 {203 plog{max(p, mn)} /(mn) } /4,

or |Aglli < 4v/s]|Agll2 with probability at least 1 — 2{max(p, mn)}~1.

Proof. First consider AEE{FB(X,Y\@,ﬁ*)}AB < o1r+/2log{max(p,mn)}/(mn). Because
E{F5(X,Y[0©,8°)} = E[RijE{Sg(YijaXz’j|(:)76*)xijx;rj|yij}
—Ri; E{S(Y:j, X510, B%)X;|V;; 127,
we have
amin(E[Ri; E{S3 (Yij, X510, B°) X ;X5 |Yi;}
—Ri; E{S5(Yi;, X0, B°)X 5|V }**)) [ Apll3 < 017/ 2log{max(p, mn)}/(mn),

and hence

[Agllz < {amm(E[Ri; E{S5(Yi;,Xi;|©, 8")X; X};|Yi;}
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—Ri; B{S2(Yi;, X510, 87X, }22))} /20117 {2log {max(p, mn)} / (mn) } /1.

Now consider AEE{FL;(X, Y|@, B*)}Ag > o1p+/2log{max(p, mn)}/(mn). We have

5 g 0L(O, .
0 < AZFS(X.YI.8")8n/2 = ~ 22D At gl ~ NslBI: 9

with probability at least 1 — 2max(p, mn)~!. Let S be the set of indices that f8y; # 0, and vg be
the sub-vector of v with the elements j € S. Then we have

180+ Aplli + [|Agslly > [IBo + A — Agsh
= [|Bo + Apse|h
= [|Bosllr + [Apse|l1-
Hence
180+ Aglli = 1Bolls = {lIBolls — [[Agsll1} + [[Agse[l1 — [Bollx
= [[Ags:|l1 — [[Aps]1- (15)

Combine with (14), we have

0L(©,8
0 < OB N A aps] - [Aps])
op
OL(©, 3
< ||(8ﬂT 01 (1Aaslls + 1Agse ) + As(lApsl — [ Agse )
< As/2(1Apsll + [1Apse ) + As(l Al — [Aps )

3a/2[|Agslli — Ag/2[|Apse |1

which implies ||Agse|l1 < 3||Ags|l1 and in turn [|Ag|i < 4[|Ags|li < 4y/s]|Ag||2 with probability
at least 1 — 2p~—!. This proves the result.

D. Proof of Theorem 1

First, we note that from A\g > 2y/wlog{max(p, mn)}/(mn) + 2(mn)~'dgx + 4adw(mn)~! in the
theorem statement and Lemma A.5 and A.6, we obtain that

9L(©,8,), _ s

1= gt e <

with probability at least 1 — 2{max(p, mn)}~!. Further, because ||Al|,p < ||A| for any matrix A,
we get

LO.By), o
T HOP = 5
op 2

When AEE{Fg(X,Y)}Aﬁ < UIF\/Qlog{maX(p, mn)}/(mn), from the proof of Lemma A.12,
we know

1As2 < (4a0p)~!/* {207 plog{max(p, mn)} / (mn) }/*.
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We discuss two cases when AEE{Fg(X,Y)}Aﬁ > o1p/2log{max(p, mn)}/(mn). Case I:
Ag & C(v). Then

log{max(p, mn log{max(p, mn
|Aﬁ|%§||Aﬁ||oo||Aﬁ||m/ simex( )}SSMHAM'W s ]

mn mn

with probability at least 1—2 max(p, mn) =1, which implies || Agl||2 < 8ay/57+/log{max(p, mn)}/(mn)
with probablhty at least 1 — 2max(p, mn) L

Case II: 8 — By € C(y). Because ©, 3 is the minimizer of £(©, 8) + Ao ||©]|. +Agl|B||1, we have

- ~ o 0L(©,B) 1 5 r0LO.8)
£(8.5)~ £(6.8) = P Ay + 5B - p)" D) By
and
~ ~ 0°L(O,
AR Y18.080/2 = (3-8 e gy
o 6
- E(@,ﬂ)—E(Q,ﬂo)—M(aﬁ’Tﬂ(’)Aﬁ
< —2ELI Ay gl — AalBll
8
0L(O®
< 1288 1Al + rlBoll — AslBl
op"

Na/2llAgl1 + AsllBo — Bl
625/5]|AgJ2 (16)

with probability at least 1 — 2max(p,mn)~! — 2(mn)~. The first inequality holds by the second
order mean value theorem for E(@,,@) on B. The third inequality holds by the fact that Ag >
2y/wlog{max(p, mn)}/(mn) + 2(mn)~tdpx + 4adw(mn)~" in the theorem statement and Lemma
A.5 and A.6, and triangular inequality. In the last inequality, we used Lemma A.12. Further, by
Lemma A.10, with probability at least 1 — exp{—Clog{max(p, mn)}},

IAINA

|AL/2F5(X,Y(©,8%)Ag/2 — AE/2E{Fﬁ(X7 Y[©,8")}As/2]
< 2a08/|Ag/2|3 + 160(dp, + d3,)a’cy//mn

SO
AG/2F5(X,Y[O,3)Ap/2 — AL /2E{Fg(X,Y|O, ")} Ag/2

> —2040,3\\A,3/2||§ —160(dg, + d%z)azcg/\/mn.
Thus,
AL/2Fa(X,Y[O,8)Ap/2
amnin (B[ Ri; E{S3(Yi;, X15]©, B°)X ;X |V; } Ri;E{S2(Yi;, Xi;|©, B%)X5]Yi; 1 %)) | Ag /2[5
-2 0‘06||AB||2 — 160(dH2 + dsz)a CO/V
= 27 'aogllAgl3 — 160(d, + d,)a’c/v/mn

with probability at least 1 — exp{—Clog{max(p, mn)}}, which implies

v

ALZF5(X,Y[O,8)Ap/2 > ags| Agll3 — 320(dp, + d3,)a*cE//mn,
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with probability at least 1 — exp{—Clog{max(p, mn)}}. Combining with (16), we have
aogllAgll3 < 6XaV/sl|Apll2 +320(dm, + d3,)a’cj/(vVimn)
with probability at least 1 — 2max(p, mn)~! — 2(mn)~! — exp{—Clog{max(p, mn)}}. Then
1As]3 — 6AsVsl|Agll2/a0p < 320(dn, + d5,)a’ci/(avgy/mn).
This leads to
(lagllz = 3AsV/s/aog)* < 320(dp, + df,)a’cj/(copv/mn) + (3Aav/s/cp)?,
Hence
1Agllz < {320(dn, + d8,)a’cy/(aopv/mn) + (3AsV/s/c0p)*}'/* + 3Agv/5/aug,

with probability at least 1 — 2 max(p, mn)~! —2(mn)~! — exp{—Clog(max(p, mn))}. Combine with
the order in Case I and before Case I, we have

18]l
< max ({320(di, + d3,)a*ch /(cog /i) + (3Asv/5/0p) }/2 + 3)gv/5/ o, 8av/s7/log{max(p, mn)}/ (mn),

(400g) /{203 log {max(p, mn)}/ (mn) }/*)

with probability at least 1 — 4 max(p, mn)~! — 2(mn)~! — 2exp{—Clog{max(p, mn)}}. This proves
the result.

E. Lemmas for Theorem 2

Let p(v, D) = D?/{v\/dlog(d)/(mn)} = D?/{v\/log(d)/d}. Define sets

Ollmax [Ofls _ 1 [ mn
Co(v) = <0 @eRmX"” = < -
o) = {07 el 18lr = v\ dos(@
Ollmax O]l _ 1 [ d
{ 7O R e 1elr = v\ Toe@ |

Be(D) = {©¢€Co(¥)l®llmax = a,[|®[lr < D, [|®]]. < p(v, D)},

Be(D) = {©€Co)|[Olmax <a,[|®]r <D,[|®]. <p(v,D)}.
Let ©Y,...,0Ne() he 5 S-covering of Bg (D) in Frobenius norm. By definition, given an arbitrary

© € Bg(D), there is some index k € {1,..., Ng(6)} and a difference matrix Ag with ||Ag|r <
such that © = ©F + Ae.

Lemma A.13 Assume Conditions (C1) and (C6) hold. Then there is a positive constant cq such
that for sufficiently large n,m,d,

Pl" (” 8‘C(®Ov /60)

2 o ca/og(d) ) ) <™,

or equivalently,

Pr <|| a‘£:(®07 ﬁO)

50 llop > ca log(d)/d) <d N
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Proof: First note that

a£(®07/60)
00
N £2(Yi;, ©0i; + BEX4)) ff(m,(aol--mTX)g(X)dX} T]
_ 1 R, J J Jj) J J e
o) ;; ’ {f(YmaQOij TBIXy) [ (YO + B3 X)g(X)aX [
= (mn) 1D D Rij[S2(Yij. X100, By) — E{S2(Yij, X500, By)[Yi; Heie]
i=1j=1

Let Wij = zg [S2( zanij|®O,ﬁ0) E{SQ( R 1]|®07/60)|Y;J}]e1ejT/(mn) Then W” is a mean
zero random matrix with [[W¥||,, < \/[[Wi|[;[[W|, < 2ds,/(mn) by Condition (C6). Further
1E(WI W)

1B (Rij[S2(Yij, Xi;1©0, Bo) — E{Sa(Yij, Xij|©0, By)[Yij }eie) ) (mn)?) [|op

14d3, / (mn)?eie] |lop

4d%, /(mn)?.

IN

Similarly,
IE(WITW )|, < dd§, /(mn)?.

Hence
0% = mnmax(| ECW W) o, [| ECWTWIT) ) < dd2, /(mn).

Therefore, by Lemma A.3 we have

pr( P00 B0y
< PSS W, 2 0
i=1 j—1

< mnmax (exp[—t2/{16d%, /(mn)}], exp[—t/{4ds, / (mn)}]) .

Now let t = cqy/dlog(d)/(mn) for ¢q = 4ds,. Then we have

8‘6(60’ IBO)
Tﬂop t)

mn max (exp[fczdlog(d)/(mn)/{16d252/(mn ,exp[—cqr/dlog(d)/(mn)/{4ds,/(mn }])

Pr(|

< mnmax (exp{—dlog(d)}, exp{—mn~/ dlog(d)mn})
= exp{—dlog(d) + log(mn)}
< d!

for d,m,n — oo.

Lemma A.14 Assume Conditions (C1)-(C6) hold. Let

Mg > 2y/wlog{max(p, mn)}/mn + 2(mn) ‘dpx + dadw (mn) L.

Then
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o~

||8£(@0,,8) . 85(@07/80) ”
00 e 7

< (2dm, +2d%,) max ([320(dn, + 43, )a%cl/ (aopv/mn) + {3AaV/5/a0a )] /2
+3AsV/5/ s, 8av/s7+/log{max(p, mn)}/(mn), (40405)*1/2{20fFlog{max(p, mn)}/(mn)}1/4)

Proof: First note that

o~

IL(®0,B8) 0L(Oo,By)

|| 8@ 86 ||Op

_ 1 ZEOw B 5
= 1= 5ea5m B~ Bl

= [l(mn)"' > Rij (Ha(Vij, X45|@0, 8%) — E{Ha(Yi;, X300, B)[Vi}
i=1 j=1

+E {82(Yi5, X110, 87)|Ys} — [E{S2(Yig, Xi51@0, 87 Vis %) ese {XT(B ~ B0)} oy

< ()Y Y TRy (Ha(Yig X @0, 87) — E{Hy(Yij, X5 @0, 8") Y5}
i=1 j=1
B {Sa(¥iy, X100, 87)%(Yss} — [B{S2(Yiy, X150, 8)]Yis}]™*) ese] oy max X (B — o)
< (mn) 7t D0 2, + 248, )eie] o max X5 (B — Bo)|
i=1 j=1

= (2dp, + 2d%,) max ([320(dH2 + d3,)a*ch/ (cogy/mn) + {3)\3V/5/ a0} ]2

+30av/5/a0p, 8av/57/ log{max(p, mn) }/ (mn), (4acog) /{203 plog{masx(p, mn) }/ (mn) }/*)

where 8% is on the line in between B and B,. The last inequality holds by Condition (C5) and
Theorem 1. This proves the result.

Lemma A.15 The §-covering number of Be(8) satisfies
144p(v, D)?
52

Proof: First using the same arguments as those lead to (39) in Negahban and Wainwright (2012),
we have

logNe(0) < max(n,m).

VieeNo® < 2222 g,

where G is a random matrix containing independent identically distribution standard normal entries.
Further,

E(||Gll2) < 4max(v/n, vm)
by the results in Section 3.1 in Bandeira et al. (2016). We have

< 144p(v, D)?

IOgN@ (5) 52

max(n,m).

This proves the result.

40



HicH DiMENSIONAL MNAR

Lemma A.16 Assume Conditions (C1), (C5), (C6). Let § = D/. Let ©' € Be(D), and b!,1 =
1,... Ne () be d-covering of Be(D) in Frobenius norm. Assume

P

mnét S 2144,0(1/, D)?

128(dH2 + d252)2a2D2 = 52 max(n,m),

Recall that

vec(A)TFo(X,Y|O, 3)vec(B)

= (ZZVGC ” HQ(Y:U’le‘é7B)VGC(ZZ‘]‘)VGC(ZZ‘J‘)T

=1 j=1

—E{H,(Y;j,X;;|©, B)vec(z;;)vec(zi;) " [V}

+E{S3(Y:5,Xs5,©, B)vec(zij)vec(zi;) " |Vis} — E{S2(Yyj, z‘j@ﬂ)veC(Zij)li’ij}@Q]VeC(B))~
Then there are positive constants cqa, cq3 Such that

Pr sup
k=1,...,N(8)

—vec( (mn) 1ZZE [Ri; E{S3( ZJ,Xij|é,,é)zijz;l;|}/;j}

i=1 j=1

vec(®F)TFe (X, YO, B)vec(OF)

~ 32(dp, + d%)a>
Ry E{S:(Yiy, X8, By Vi) P vec(@)| > 67 4 (HS))

Jmn

< 4dexp (—cd2D2mn) ,

Pr ( sup  |vec(@F)TFg (X, Y|O, B)vec(® — OF)
k=1,...,N ()

_Vec((")k)T(mn)_lzZ R”E{SQ( ij> ij|(:)>B)ZijZiTj|}/;j}

64(dp, + d252)a2)

_RUE{SQ( (ZR) Z]| )lell/vlj}@Q]Vec(@ ®k)| > 62 \/Tﬁ

< 4dexp (—cngan) .
Proof: First we have

[vec(©)F" Ri;[Ha (Y, X510, B)vec(z;)vec(ziy) T — E{Hy(Yi;, X|®, B)vec(zi;)vec(z:;) " |V:;}
+E{S3(Yyj,X|O, B)vec(zij)vec(zij) Vi) — E{S2(Yi, X|®, B)vec(z;; )| Vi; } 2| vec(©)F|

< {2di, 10" p[|vec(zij)||2]|©" lmax|Ivec(zij) 11
+2d3, 0" || [ vec(zi;) 12| ©F || max [ vec(zi;) |1 }
= 2(dp, +d%,)aD
and

vec(®)F" Ry;[Ha(YVig, X510, B)vec(zi;)vec(ziy) T — E{Ha(Yij, X|©, B)vec(z;)vec(zi;) T |Vis}
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+E{S3(Yi;, X|©, B)vec(zi;)vec(zi;) " |Vij} — E{S2(Yi;, X|©, B)vec(z;;)|Vi; } ¥ Jvec(©)F|
{2d11, || O || max | vec(zij) |11 ©F | max | vec(zi;) |11

+2d3, | ©F || max | vec(zis) |11 © lmax [ vec(zi; )11}

= 2(dp, +d3%,)a’.

IA

by Condition (C6). We now use Lemma A.2, where we treat each summand in vec(©F)TFg (X, Y|©, B)vec(©F)
as Y; in Lemma A.2, and set (u;,v;) = {—2(dpm,+d%,)aD, 2(dp,+d%,)aD} and (uy,v1;) = {—2(dg,+
d3,)a*,2(dp, + d%,)a*}. Consider T that contains only one vector t, where t is the mn dimensional

vector with element (mn)~!. Then Z in Lemma A .2 is vec(©") TFe (X, Y |0, B)vec(©F) and the o in

Lemma A.2 (7)is o = [Y1_) 3200 (mn) "> {4(dm, +d%,)aD}?|"/? = 4(dg, +d%,)aD/r/mn = O(1) by
Condition (C6). Further, the o in Lemma A.2 (8) is 01 = [Y7; Y1 (mn) ~*{4(du, +d3, )a*}?]/? =

4(dg, + d3,)a?//mn. Hence let mp be the median of vec(©F)TFe (X, YO, B)vec(®F), we have

32(dp, + d252)a2)

Pr (|vec(@k)TF@(x,Y|é,B)vec(@k) — vec(@")TE{Fo(X,Y|O, B)}vec(®F)| > 62 + NG

< Pr (|vec(®k)TF@(X, Y|©, B)vec(©F) —mp}| + |vec(©F) ' E{Fo (X, YO, B) }vec(©F) — mp}| > 42
+32(dH2 + d252)a2>
vmn
2 2 2 2
< Pr <|vec(@k)TF@(X,Y|(:),B)vec(@k) —mp} > 62+ 32(dH\z/%lsz)a B 16\/77(de; ds,)a )
< Pr (|vec(®k)TF@(X,Y|é,[3)vec(®k) —mp| > 52)
<

e —mné?
X .
P 64(dn, + &2, )2a?D?

Now for ®F € B(D), k =1,..., Ng(0), we have

Pr { sup  |vec(@F)TFg(OF, X, YO, B)vec(OF)
k=1,...,N(5)

—(mn) 7YY vee(©)F B[R E{S3(Yi;, X310, B)vec(zi;)vec(zi;) 7| Vij }
i=1 j=1
~ ~ 32(dy, + d%))a®

Ry B{S2(5: X 18, Bjvect i) vec(@4)| > 52+ 0 LI

—mné?
<
< 46Xp{64(dH2 )Pt D + log{N®(§)}}

—mné* 144p(v, D)?
< 4 .
> exp { 64(dH2 i d%2)2G2D2 + 52 max(n, m)}

Now recall § = D/¢&, and

mnd* < 2144p(1/, D)?
64(dpr, + d3,)?a?D? ~ 92

max(n, m).
Thus we have

Pr{ sup  |vec(©F)TFe (X, Y|O, B)vec(©F)
k=1,...,Ne(6)
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—vec(@*)T(mn) ™1 Y "> " B{Ri; E{S3 (Y, X510, B)vec(zi;)vec(z;) Vi }

i=1 j=1

~ o~ 32(dg, + d% )a>
—Ri; E{S2(Yij, X4510©, B)vec(z;;)|Yi; } ¥ vec(©)F| > 6 + (H\/WSZ)}

< 4dexp (—cdzDan) ,

where cg2 = 1/{128a%¢*(dpy, + d%,)*}. Using the similar argument we can show that there is a
cq3 > 0 such that

Pr{ sup  |vec(®")TFe(X,Y|O, B)vec(® — OF)
k=1,...,Ne(9)

—(vec®®)T(mn) ™1 Y " " E{Ri; E{S3(Y:, X510, B)vec(zi;)vec(zi;) " |V, }

i=1 j=1

- 64(dy, + d2, )a?
Ry E{Sa(Yiy, X518, B)vec(zi;)|Viy )} % Jvec(® — ©F)] > 62 + (Hm}

Jmn

<4dexp (fcngan) .
with cqs = 1/{256a?¢*(dp, + d%,)?}. This proves the result.
Define
Qij = |Ha(Yij,X5|©,8) — E{Hx(Y;;,X;|©,8)Y;;}
+E{53(Yi, X0, B)|Yi;} — E{S:(Yy, X0, B)| Y5}, (17)
and by Condition (C6), we have |Q;;| < 2(du, + dg,).
Lemma A.17 Define
D(D) ={Ae e R"™[[|Aslr <6, [|Aells <2p(v,D), and A |max < 2a}.
The §-covering number of D(D) satisfies

576p(v, D)>

1OgN'D (6) < 52

max(n,m).
Proof: Because D(D) C D(D) = {Ae € R™™||Aell» < 2p(v, D)}. Then d-covering number of
D(D) defined by Nz(0) satisfies Np(d) < N5(d). Using the same arguments as those lead to (39)
in Negahban and Wainwright (2012), we have

v, D)

o) < D)

where G is a random matrix containing independent identically distribution standard normal entries.
Further,

E([G2),

E(|Gll2) < 4max(v/n, v/m)
by the results in Section 3.1 in Bandeira et al. (2016). We have

576p(v, D)>

logNp(0) <logNz(0) < 5

max(n,m).

This proves the result.
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Lemma A.18 Assume Conditions (C4), (C5) and (C6) hold. Define
D(D) = {A@ € Rnme‘A@HF <9, ||A9||* < 2p(l/7 D)aa’ndHA@”max < 20'}’
and let 6 = D/E. Assume v satisfies

mné* - 2576p(1/, D)?
256(d s, + d3,)%a20? ~ 52

max(n, m).
Further, let F@(X,Y|(:),L~3) be as defined in Lemma A.16. Then

Pr{ sup  |vec(Ae) Fo( X,Y|0, B)vec(Ap) — vec(Ae)TE{Fo(X,Y|O,3)}vec(Ao)| > D?/¢>
Ae€cD(D)

+114(dH2 +d3, )a?
vmn
—mnD? >
512(dp, + d,)%ae? )"

< 4dexp (

Proof: First note that for Ag € D(D) we have

|VeC(A®)TRin2(Yij,Xz‘j\(:)aB)VGC(Zz‘j)VeC(Zz‘j)TVeC(A@)|
< Ao |lmaxlvec(ij) |l }2| Ha(Yi;, Xi5, ©, B)| < 4a’dp,.

Similarly,
lvec(Ae) T Rij E{Hy (Y, Xij|(:), ,(N")')vec(zij)vec(zij)T|Yij}vec(A@)| < 4d’dp,,
[vec(Ae) " Riy E{S3(Yij, Xij|©, B)vec(zij)vec(zij) " [Yijivec(Ae)| < da’ds,,
[vec(Ae) " Rij E{S(Vij, X510, B)zi| Vi } ¥ *vec(Ae)| < 4a’d,.

Also we have

lvec(Ae) T RijHay(Yij, X510, B)vec(zij)vec(zi;) " vec(Ae)|
< AllAe|maxllvec(zij) 1 HIlAe || Fllzij || 7} Ha (Yij, Xij, ©, 8%)| < 2addy, .

Similarly,
lvec(Ao) Ry E{Hy(Yi;,Xi;|©, B)vec(zi; )vec(zi;) T |Yij }vee(Ae)| < 2addy,,
|Vec(A@)TRijE{S’§(YU,Xij\é,B)Vec(zij)vec(zij)T|Y;j}vec(A@)\ < 2addy,,
vec(Ae) T Ri; B{S:(Yij, X510, B)zij|Yij}¥2vec(Ae)| < 2add,.

Hence each summand in vec(Ag ) "Fo (X, Y|O, B)vec(Ae) is in the range of [—8a%(dy, +d3, ), 8a*(dm,+
d%,)], and also in the range of [~4ad(dp, + d%,),4ad(dg, + d3,)]. Define o4 = 8ad(dy, + d,) be
the o in Lemma A.2 (7) and 014 = 16a?(dy, + d?%) be the ¢ in Lemma A.2 (8). By Lemma A.2,

let mp be the median of vec(Ae)TFeo (X, Y|O, B)vec(Ae), we have

Pr (|vec(A@)TF@(x,Y|é, B)vec(Ap) — vec(Ap)TE{Fo(X,Y|O,3)}vec(As)| >

114(dpg, + dQSZ)cﬂ)

2
0" + —
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< Pr (|vec(A@)TF@(x,Y|(:), B)vec(Ae) — mp}| + [vec(Ae)TE{Fo(X,Y|O, B)}vec(Ap) — mp}| >
24 114(di{;ﬂ%d252)a2>
< Pr(|vec(Ao) Fo(X, Y|®, B)vec(Ao) — mp}| = 62
114(dy, + dg))a®  64y/7(dn, + dE,)a®
T )
< Pr (\/mwec(AG)TF@(x,wé,B)vec(Ae) —mp| > \/maz’)
<

e —mné*
P 256(du, + 43, )%a%5% | °

Therefore combine Lemma A.17,

Pr{ sup  |vec(Ae) " Fo(X,Y|O,B)vec(Ap) — vec(Ae) E{Fo (X, Y|O, B)}vec(Ap)| > 62
A@G'D(D)

+114(dH2 + dgz)oﬂ}

vmn
—mnd*
< 4 log{Np(d
= P <256(de + &2, )2a%5? +1og{ No( )})
< —mnd? 576p(v, D)?

4 .
exP (256(dH2 B T max(”’m))
Now because § = D/ and

mnd* S 2576p(1/, D)?
256(dm, + d3,)%a20? ~ 02

max(n,m).
Therefore,

Pr{ sup  |vec(Ae) Fo(X,Y|O, B)vec(Ap) — vec(Ap ) E{Fo(X,Y|O, B)lvec(Ap)| > D?/¢2
AecD(D)

+114(dH2 +dg, )a?
v/ mn
—mnD? >
512(dpy, + d3,)2a2€2 )

< 4dexp <

This proves the result.

Lemma A.19 Assume Conditions (C1)-(C5) hold. Let 6 = D/£. Then we have

Pr { [vec(©) Fo (X, Y |0, B)vec(®) — vec(®)" (mn) ™1 Y > B[Ry E{S3(Vy;,X;j|©", B)vec(z;)vec(zi;) |V, }
i=1 j=1
—Ri;E{S5(Yij, X;5|©", B)vec(zi;)|Yi; }**vec(©)|

> Qmin ((m”)1 3> B[R B{S3(Yij, X507, B)vec(zij)vec(zi;) " Vi }

i=1 j=1

45



JIN, MA AND JIANG

274(dH2 + d%2 )a2
vmn

— Ry B{Sa(Yi, X510, Byvec(ziy)| Vi 1)) /2O113 +
= exp{—Cdlog(d)}

,@ECe)(V)}

for some positive constant C, where the expectations are taken over X, Y.

Proof: For any © € Bg(D), for any k € {1,...,N(8)}, let Ao = © — OF then Ag € D(D). In
addition,

vee(©)TFe(X, Y|, B)vec(®) — vec(© Z Z E[Ri;E{S3(Yij, X,;|©", B)vec(z;)vec(zi;) | Yi; }
=1 j=1
—Rij E{S:(Yi;, Xi;|©", B)vec(z;)|Yi; } ¥ vec(©)
- FB(@MA@,@M&@,X Y|@*,[3)

—vec(©F + Ag)" (mn) ZZERUE{SQ i X510, B)vec(zi;)vee(zi;) " Vi }

=1 j=1

—Ry;E{S2(Y;;,X,;|©", B)vec(zi;)|Yi; } ¥ Jvec(@" + Ag)
= vec(©")TFg(X,Y|0", B)vec(©F) — vec(©F)T (mn) ZZ [Ri; E{S3(Yy;, Xi;|©*, B)vec(zij)vec(zi;) Vs }

—Ri; E{S:(Yij, Xi;|©", B)vec(z;)|Yi; } ¥ vec(©F)

+2vec(@")TFo (X, Y|O*, B) A — 2vec(®F)T

HM:

Z RZ]E{SZ 77 ij|®*7B)Vec(zij)vec(zij)T|Y;j}

—Ri; E{S(Y:j, X510, B )vec(z;)|V:; }**|vec(Ae)

+vec(Ae) Fo (X, Y0, B)Ae — vec(Ae) (mn) ' > Y E[R; E{S3(Vj, X5|©", B)vec(zij)vec(zi;) |V}
i=1j=1

—Ri;E{S2(Yij, Xi;|©", B)vec(zi;)|Yij 2 vec(Aw).

Hence by Lemmas A.16 and A.18, while replacing e) by ©* and B by B, there are constants bgs
such that

sup  |vec(®)TFe (X, Y|0", B)vec(©) (18)
OcBe (D)
—vec(© ZZERUE{SQ 5 X107, B)vec(ij)vee(i;) | Viy}
1=15=1
—Riy E{S(Yij, Xi5|@7, B)vec(zy)| i } 2 ]vec(©)]
< sup |vec(®)TFo(X,Y|O", B)vec(O) (19)
@GB@(D)
—vec( (mn) ZZ [R;; E{S3 (Y3, ij|®*,B)Vec(zij)vec(zij)TW;j}
i=1 j=1
—Rij E{S5(Yij, Xi;|©", B)vec(zi;)|Yis } % |vec(©)]
< sup lvec(®")TFe (X, Y|©*, B)OF (20)
k=1,...,Ne(9)
—vec( ZZE Ri; E{S3(Y, zg»Xz‘j|®*7B)Vec(zij)vec(zij)TD/ij}
=1 j=1
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—Rii B{S:(Yij, X;j|©", B)vec(zi;)|Yij } ¥ ]vec(©F))|

+2  sup \vec(@’f)TF@(x,Y\@*,B)Z.@ (21)
k=1,...,Ne(9)
—vec(@F)T ZZE [Ri; E{S3(Yi;,X,;|©%, B)vec(z;)vee(zi;) " |Yi; }
=1 j=1
—Ri; B{S2(Y:j,X;j|©, B)vec(zi;)|Vi; }¥?|vec(Ae )|
+ sup  |vec(Ae)"Fo(X,Y|O", B)vec(Ao) (22)
Ag€eD(D)

—vec(A@ (mn) IZZE [R;; E{S3 (Y3, Z-j|®*,B)Vec(zij)vec(zij)TD/;j}
i=1 j=1
—Ri; E{S3(Yij, X5|©", B)vec(zi;)| Vi }**vec(Ao)|
274(dH2 + d%z)az
vmn

4D? /&% + (23)

with probability at least 1 — 12{exp(—bgzD?mn)}. The last inequality holds by Lemma A.16 and

A.18. Denote

@ = Omin ((mﬂ)lzz [Ri; E{S3(Yij,X;|©", B)vec(zi;)vec(zi;) " |V}
i=1j=1

Ry E{$:(Yij, X35|©", B)vec(z;;)|Vig}**])

We choose ¢ > /8/ag and define a = £2a,9/8, then o > 1.
Now note for ® € Ce(v) with ||©||max = b for a constant b, we have

I®f% > bv]|®|.

log(d log(d
S0 > ey E

which implies |®||r > bvy/log(d)/d. Define u(b) = b*>v?log(d)/d. Moreover, we define

Si(b) ={© € Co()[[®]lmax = b, /!~ u(b) < O] < y/a'u(b), O]« < p(v; /' u(b))},

then S;(b) C Be(y/alu(b)). For ® € Sy Dyy = 274(dp, + d%,)a’, we have

Therefore,

(a0/2)[©]% + j% > (ao/2)al " u(b) + \ﬁ%

4al,u(b) Dd7
£ vmn’

Pr {|vec(®)TF@(X,Y|®*, B)vec(©)

—vec

—Ryj

ZZ [Ri; E{S3(Yyj, X;]©", B)vec(zi;)vec(zi;) " [V}
=1 j=1
E{S5(Y:j,X;|©", B)vec(zi;)|Vij }*2]vec(©))
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Dgr
NG

/O “pr { lvec(®)TFo (X, Y|0©*, B)vec(©)

> (/21012 + 2 0 ¢ Colv >}

—Vec(@)T(mn)_lzz [Rij E{S3(Yij, X;5|©” 7ﬂ)VeC(Zm vec(zi;) |V}

—Rij E{S5( zJ,Xij|®*nB)VeC(Zij)|Yij} “?vec(©)|

D
> (00/2)| @]t + L. © € Co(v >||@||max_b}db

/0 ’ Z Pr { lvec(®)TFe (X, Y|©*, B)vec(©)

_vec( ZZ [Ri E{S3(Yij, X;|©", B)vec(z:; vec(z;;) |V }
—Riy B{Ss( mee*,ﬁ)vec(zu)m]} *Jvec(®)]

> (ao/2)l0% + 27 o e&(b)}db

Dy
vmn’
> pr {|vec(®)TF@(X, Y|©*, B)vec(©)
=1

—vec( ZZERmE{Sz 2 X510, B)vec(zij ) vee(zi;) Vi }
=1 j=1

Ry E{Sy(Yy. X, |0 B)vec(zi))| iy} vee(©)]
Dy

> (/D0 + . <b*>}

Z Pr {|vec(®)TF@(X, Y|©*, B)vec(®)
=1
*Vec(@)T(mn)flzZ szE{Sz ij ij‘@*aB)Vec(zij)vec(zij)TD/z’j}

~Ri; E{S2(Yij, X5 ©", B)vec(zi;)| Vi }*vec(©)] = da' u(b*) /€

Socse)

1ZZexp —bgzp(b*)altmn)
=1

12 Z exp{—basllog(a)u(d*)mn}

=1
exp{—baslog(a)mnpu(b*)}
1 — exp{—bazlog(a)mnpu(b*)}
exp{—Cdlog(d)},

for some positive constant C, where b* is a point on the line connecting 0 and a. The third inequality
holds by (18), the fourth inequality holds because a! > llog(a) > 0 for a > 1. This proves the result.
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Lemma A.20 Assume Conditions (C5) and (C6) hold, and select A@ > 2||8E(®0,[A3)/8®||0p. If

VGC(A@)TE{F@(X,Y|®*,B)}V6C(A@) < o4rv/2dlog(d)/(mn),

then
lAellr < amin | (mn)™" > " E[Ry;E{S3(Yi;, X;|0©%, B)vec(zi;)vec(zi;) " Vi; }
i=1j=1
x 3 ®2 —1/2 2 1/4
Ry E{$:(Yij, Xij|©", B)vec(z;j)|Vis}*]) " {203 pdlog(d)/(mn)} /.
Otherwise

lAell« <8Vr|Aelr
with probability at least 1 — 2 exp{—dlog(d)}, where 04p = 32a*(dp, +d%,) as defined in Theorem 2.
Proof: First as shown in Lemma A.18 that for Ag € D(D) we have
vec(Ae) " Rij Ha(Yij, Xi5|©%, B)vec(zi;)vec(zi;) " vec(Ae )|
< { A6 |lmaxlIvec(zij) 1| Ha(Yij, X507, B)| < 4a’dp,.

Similarly,

|vec(Ae)T Ry E{Ho(Y;, Xij‘Q*,B)Vec(zz'j)VeC(Zij)T|Ej}VeC(A@)| 4a’dyy,,

[vec(Ae)" Rij E{S3(Yij, Xi;|©”, B)vec(aij)vec(zi;) ' [Vij }vec(Ae))| 4a*ds,,

|VeC(A@)TRZ‘jE{SQ (}/’ija Xij|®*,ﬂ)zij |}/ij}®2VGC(A@)| S 4a2d§2.

IAIA

Hence each summand in vec(Ag ) "Fo (X, Y|O*, B)vec(Ap)—vec(Ae ) E{Fo (X, Y|0*, B)}vec(Ap)
is in the range of [~16a°(dy, + d3, ), 16a*(du, + d3,)], and in turn is sub-Gaussian with parameter
oqr by Lemma A.1. Lemma A.1 further leads to

Pr{|vec(Ae)"Fo(X, Y|O", B)vec(Ao) - vec(Ao) " E{Fo(X, Y|O", B)jvec(Ao)| >t

Pr {|mnvec(A@)F@(X,Y|®*, B)vec(Ae) — mnvec(Ae)TE{Fe (X, Y|0, B)lvec(Ap)| > mnt}

mn)?t?
< 2exp {— ;7)2 }
mnoi,
mnit?
= 2exp <— ) (24)
2(73F

for any ¢t > 0. By (24), let t = o4r+/2dlog(d)/(mn), we have
vec(Ap) Fo (X, Y|0, B)vec(Ap) > vec(Ae) T E{Fo (X, Y|O", B)lvec(Ae) — oary/2dlog(d)/(mn) (25)

with probability at least 1 — 2 exp{—dlog(d)}.
Now we discuss two cases. Case I:

VGC(A@))TE{F(.)(X7Y|®*,B)}V6C(A@) < o4r v/ 2dlog(d)/(mn)
This leads to

min (E[Ri; B{S3(Yij, Xi;|©", B)vec(z;)vee(zi;) T |V}
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—Rij E{S:(Yi;, X;|©7, B)vec(z)|Yi; }22])| Ae |3 < gary/2dlog(d)/(mn),
hence

|Aellr < amin(E[R;E{S3(Yij, X107, B)vec(zi;)vec(zi;) " |Vi;}
—Rij B{S>(Yij, X5, 0", B)vec(zi; )| Yi; } %))~V /2 {207 pdlog(d) / (mn) } /.

Case II:
vec(Ae) E{Fo (X, Y|0", B)}vec(Ao) > oary/2dlog(d)/(mn).
Under (25), this leads to
vec(Ae) Fo (X, Y|0*, B)vec(Ag) > 0. (26)

By Lemma 1 and (21) in Negahban and Wainwright (2012), when \g > 2||6/3(@0,,@)/6,8||0p, note
that ®¢ has rank r, which satisfies r < 2r, we get

[Aell« < 8Vr[Aelr

This proves the result.

F. Proof of Theorem 2

Proof: Let Ag = e - ®, we consider the situation where

vec(Ag) E{Fo (X, Y|O, E)}vec(A@) > oqry/2dlog(d)/(mn).

First we consider Case I: Ag ¢ Ce(v). Then, with probability at least 1 — 2 exp{—dlog(d)},

dlog(d dlog(d
1261 < A6 sl Aollvy PED < 160yr|Aprry TEL,
mn mn
which implies ||Aeg||r < 16ay/rvy/dlog(d)/(mn).
Case II: Ag € Co(v). Because ©, 3 is the minimizer of £(©, 8) + Ae||©|. + Agl|Bll1, we have

o o 0L(0,B) L6 eur_ OLOB) 5
L(©,8) — L(Oy,B) = <37®» Ae) + QVGC(Q - ©y) 8vec(®)6vec(@)Tvec(® —©y)
and
Fs(Ae,Ae, X, Y[|0",3)/2 = vec(® —O))T 0°L©O7,p) vec(© — ©g) /2

Ovec(®)0vec(©)T

9L(©0, )

= L(6.8) - L(©0,B) -~ (— g

~

7A®>

9L(O,, _
< (2000 Ao)t 2600~ roll@.
OL(©y, B _
< 12200 | ae. + rol€]l. Aol O].
< Je/2lAell. + o]0y~ O]
< 12xeVr||Aellr (27)
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with probability at least 1 — 2 exp{—dlog(d)} — d~!. The first inequality holds by the second order
mean value theorem for £(©, 3) on ©. The second inequlity is a known property concerning norms
and trace. The third inequality holds by the selection that

Ao > 2cqy/dlog(d)/(mn) + 2(2dp, + 2d%,) max ([1001;:/(0405\/7%) + {3)\5\/5/0405}2]1/2

+3X5/5/a0p, 8av/57y/log{max(p, mn) }/ (mn), (4aog) ~'/?{207 plog{max(p, mn)} / (mn) }'/ 4) ;

in the theorem statement which is greater than 2||0L(Oy, B)/@@HOP with probability at least 1—d~!.
The last line holds by Lemma A.20.
Further, by Lemma A.19 we have
vec(Ae) Fo(X,Y|0%, B)vec(Ap)/2
min(B[Ri; B{S3 (Yij, X0, B)vec(zq; )vec(zy;) | Viy }
—Ri; B{S2(Yi;,Xi5|©", B)vec(z;)|Yi;}*°]) /4| Ae T — 137(dn, + dE,)a®/v/mn
= wellAel} — 137(dy, + dg,)a®//mn
with probability at least 1 — exp{—Cdlog(d)}. Combine with (27), we have that with probability at
least 1 — exp{—Cldlog(d)} — 2 exp{—dlog(d)},

wmelAelr < 12Xevr|Ae|r +137(du, + d3,)a®/(v/mn).

vV

Then
{llAe]r —6XeVr/ave} < [137(du, + d§,)a®/(ave vmn) + 36AgT/0je]
Hence
|Aellr < [137(dm, + d3,)a*/(avev/mn) + 367Xgr/aje]"? + 6)e/r/ave.
Combine with the order in Case I and Lemma A.20, we have
|Aellr
< max ([137(dH2 + d%,)a?/ (awevmn) + 36057/ ade ]/ + 6Ae T/ ave, 16ay/rvy/dlog(d) /mn,
(1ave) /2 {203 pdlog(d) /(mn)}/*)

with probability at least 1 — exp{—Cdlog(d)} — 2 exp{—dlog(d)} — d~!. This proves the result.

G. Lemmas for Theorem 3

Lemma A.21 Assume Conditions (C5) and (C6) hold. Then for unit vectors v.€ RP, u € R™
and w € R™P gych that ||v|2 =1, |lull2 = 1 and |wlj2 = 1, we have

Fa(v,v,X,Y(0,8) > B{Fs(v,v,X,Y|0,8)} — dco/(du, + &%, log{max(p, mn)}/(mn), (25)

with probability at least 1 — 2 max(p, mn)~*,

u"Fo(X, |0, 8)u > u E{Fe(X, Y|®, B)bu — 4,/(du, + d, )log(mn)/(mn), (29)
with probability at least 1 — 2(mn)~t, and
wl9*L(©,8)/0[{vec(©)T, BT} T]**w
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> B (WT9*L(8,8)/0l{vec(®)", B"}I%*w ) — d(co + 1)1/ (du, + &3, og(mn + p) /mn
with probability at least 1 — 2(p +mn) 1.

Proof: First note that for unit vector v,v € RP, because ||v||cc < |V||2 = 1, we have

|VTRin2(Yij,Xij|@,ﬂ)xin;5V|
< IVl Xij 1} Ha(Yig, X510, 8) < c3d,,

Similarly

V' Ri; E{H3(Yi;, Xi;|©, B)X; X |Yi; }v| < fdu,,
and

VIR E{S5(Yi;,Xi;|0, B) XX |Yij }v| < c§d3,,
and

VIR E{S(Yij, Xi5|©, B)Xy5|Yis Y 2| < 3d,.

Hence we have each summand in Fg(v,v,X,Y|0,3) — E{Fg(v,v,X,Y|®,3)} is in the range of
{—4cj(du, + d3,),4c3(dm, + d3,)}, and in turn is sub-Gaussian with parameter 8¢§(dp, + d3,) by
Lemma A.1. Here the expectation is taken over X and Y. Therefore, by Lemma A.1, for any given
v

Pr{|Fg(v,v,X,Y|0,3) — E{Fg(v,v,X,Y|O,8)}| >t}
Pr{imnF(v,v,X,Y|0O,8) - mnE{Fg(v,v,X,Y |0, 3)}| > mnt}

2exp |— (mn)*t"
P 2mn{8¢c§(dm, + d3,)}

IN

9e { mnt? }
= XPy———5—————~ ¢ -
PV 16 (du, + 43,)

Now choose t = \/160(2) (dr, + d3, )log{max(p,mn)}/(mn), we obtain that for any given unit vector
V7

Pr {|Fg(v7v, X,Y|®,8) - E{Fg(v,v,X,Y|0O,3)}|

> \/IGC%(dH2 + d%, )log{max(p, mn)}/(mn)} < 2max(p, mn) "t (30)

Therefore,

Fs(v,v,X,Y[©,8) — E{Fg(v,v,X,Y|0,0)} < 4\/03(dH2 + d, )log{max(p, mn)}/(mn),

with probability at least 1 — 2max(p, mn)~!. This proves (28).
Furthermore, for unit vector u € R™", we have

|uTRin2(Y;j,Xij|®,ﬂ)vec(zij)vec(zij)Tu|
< {llullcollvee(zi) 1} [Ha(Yij, Xi1©, B)| < d, .
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Similarly,
[u" Rij E{H2(Yy;, X ©, B)vec(zi;)vec(zy;)  [Yiju| < da,,
[u" R;; E{S5(Yi;,Xi;|©, B)vec(zi;)vec(zi;) Vi tu| < di,,
lu" R; E{S5(Yi;, X510, B)vec(z;)|Vi; }%u| < df,.

Hence each summand in uTFg (X, Y|®, 8)u—uTE{Fe(X,Y|®,3)}u is in the range of [—4(d, +
d3,),4(dg, +d%,)], and in turn is sub-Gaussian with parameter 8(dp, +d%,) by Lemma A.1. Lemma
A1 further leads to
Pr{|ju"Fe(X,Y|®,8)u —u"E{Fe(X,Y|O,3)}u| > t}
Pr{|mnu'Fe(X,Y|0,t8)u — mnE{u"Fe(X,Y|O,8)}u| > mnt}

(mn)t?
2mn{8(dm, + d%z)}]

9 { mnt2 }
prg X e —
P 16(dm, + 42,)

for any t > 0. Let t = \/16(dH2 + d3, )log(mn)/(mn), we have

IN

2 exp {—

u'Fe(X,Y|®,8)u>u'E{Fe(X,Y|O,3)}u— 4\/(de + d%, )log(mn)/(mn) (31)

with probability at least 1 — 2(mn)~*.
Moreover, using the same arguments as those lead to (30), (31), and the fact that ||z;;|, = 1,
we have for unit vector w € R™"+P,

w!92L(6. B)/0[{vec(®)", A7) *w
> B (W'PL(©.5)/0lvec(®). AT} 17w ) — 4y f(co + 1)2(di + d, log(mn +p)fn,

with probability at least 1 — 2(p + mn) L.

Lemma A.22 Assume

BTE{Fs(X,Y|©,8)}B > 4co \/(dm + d3, )log{max(p, mn)}/(mn)||83,

for all B that satisfies ||B]|oc < 2a and B,© that satisfy Bl < a and ||O||max < a. Recall that
og = C1(2du, +2d%,)cd for Cy > 1, Q=1 = F(O' ", 8" ") /X\g and

gs(©1 B Q) = (aL(© 1,871 /08,8 7 — B Y+ a8 =B,

where
~t—1

B = argming(0L(O" 1, B71) /08, 8) + AsllBl1, 1Bl < Q"
Select
0<n<1/og.

Then we have

ngs(@ 1, B QI 1)?
2 (2Q11)2 ’

F''.g)<Fe" 5™
with probability at least 1 — 2 max(p, mn)~*.
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Proof: Because

BTE(F(X,Y|6,8)}8 > deoy/(du, + a2, og{max(p, mn)} /(mn) |83,

the second derivative of £(®,3) with respect to 3 is positive definite with probability at least
1 — 2max(p,mn)~! by Lemma A.21, and hence we majorize F(@t_l,,ﬁ) at 871 as

F©'.8) < FO"B7)+(B-p oL@, 87)/08)

+218 - 8713 + A8l — 18" 1)

F(O',8") +(8-p8"",0L(0'1,87")/08)

45018 =8 1+ Ap(181 — 18" 1) (3)

IN

for any 3, where we have used og < 1/7.
~t—1
Furthermore, for any given b > 0, let 3" = b,@t + (1 —b)B"*, where recall that

~t—1

B =argming(0L(© ', 871)/08,8) + sl Bll1. |8l < Q! (33)

with Q' = F(@'!, 8" 1)/Ag, it holds that
2

F((_)tfl,ﬂt) < F(@tfl,ﬁt—l) + b<a£(®t71’ﬁt—l)/aﬁ,gt_l o ﬂt_1> 4 bf

2L ate12
518"~ B

s(b8 "+ A =58y — 18" )

~t— 2
PO 67 boc© g ) /0p. B — )+ 5B -8

IA

+hag(IB =B ). (34)

To minimize the right hand side, we set

n{—L© 1, 8108, - 87— as(18 - B}
~t—1
187" - B3
ngs(®1, 871 Q1)
t .

18— g2

Note that gg(thl, B, Q1) > 0 due to its definition and the definition of ,Bt_l, hence b > 0.
Note that F(@'!,8"") = £(©"",8"") — L+ Xe|®" ||, + AgllB'[1 > Ag[|B8'"[|1, hence

181l < Q. Since B is the minimizer of (33), we get
ga(®', 31 Q1Y)
— (oc© 87 /08,8 7 -8 4B -8
= (L@, 8 /08,8 =B )+ Al = AsllBT Il 2 0.
Plug b in (34), we have

ngs(®@ ", B, Q)2
_5 ~t—1

1B =873

~t—1 ~t—1
The last equality hods because |31 < Q"' and || || < Q'', and hence |3 — 8" Y3 <
(2Q'~1)2. This proves the result.

S_

ngs(®@ ', 87 Q)2
2

t— t— —1
F@e".gh-Fr@O" 8 < (2Q1)2

(35)
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Lemma A.23 Assume

vec(®)TE{Fe(X,Y|0©,B)}lvec(©) > 4\/(de+d§2)log(mn)/(mn)||®||2F

for all © that satisfies ||©||max < 2a and B,© that satisfy ||Bllcc < @ and ||O||max < a. Recall that
oo =2dpy, +2d%, R~ =F(©'', 8" /)e, and
90(©'1, B 'Y = (£(©71,8)/00,0' —8') + Noll0' T — 6.
where
6" = argming (9L(©'1, 8"/, ©) + Ae||®|..||O], < R,
Select 0 < m < 1/oe. Then we have

_mge(® 1, B R
2 (QRtfl)Q ’

Fe'.p") <Fe'8)

with probability at least 1 — 2(mn)~ 1.

Proof: Because

E{vec(©)"Fo(X,Y|O,B)}vec(®) > 4\/(de+d252)log(mn)/(mn)||®||2F,

then the second derivative of £(®, 3) with respect to vec(®) is positive definite with probability at
least 1 — 2(mn)~" by Lemma A.21, and hence we majorize F(©,3") at @ ! as

F©.6) < F(O''.p)+(@-0"" e /o)
o _ —
+210 -0k + re(O]. — [©']1.)
F(O'! ) + (@ -0 e, 5)/08)
1 _ _
+3,-1© = Ok + Ao (O] ~ [©'].)

IN

for any ©.
Furthermore, for any given b > 0, let ©" = béti1 + (1 —b)©' !, where recall that

~t—1

© = argming (0£(0',8)/0©,0) + 1o |©|.,[|®]. < R (36)
with R~ = F(@'!, 8')/\e, it holds that

~t— 2
F(O'.6) < FO",6) 1oL ,6)/00.6 ~ 0+ 118" ~ o'
1
e([b8 + (15O ~ &)
b2 <t

IN

F(O'.8) + boL(©'1.0/00.6" '~ ')+ Sj6 —e}
1
~t—1
Ao (0 —©"|L). (37)
To minimize the right hand side, we set

m{—(0£(0",3/00,0 ' — @) —re(|6 —0',)}

—~i—1 —
e " —e" 3
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nlg@(et_17 /8t7 Rt_l)
—i—1 ~ .
e -e %

Note that g@(Gt_l,ﬂt, Q1) > 0 due to its definition and the definition of (:)til, hence b > 0. Note
that F(©", ") = L(©'',8") ~L+2e[® ' [.+As[IB[1 > Xe[|©' |, hence @' < R*~".

Since (:))571 is the minimizer of (36), we get

g@(@lﬁ—lj/@t’Rtfl)

OL©1,8)/00,00 0 ) £ \e|® -0
(0L(©,6)/00,01 — 8" ) + 20O . ~ Ao[® . >0.

Y

Plug b in (37), we have

t—1 t t—1\2 @t—l t t—1\2
F(@t”@t) —F(@t_l,,@t) < _ﬂgg(@ 7/8 7R ) < _ﬂg@( a/B 7R )

— 2 ~t—1

< 38
16" — ez 2 R .

: t—1 t—1 ot t—1 o _at-12
The last equality hods because ||©° |} < R ' and |©® |; < R!, and hence |©@ -0 7|53 <
(2R'=1)2. This proves the result.

H. Proof of Theorem 3
Proof: Let

B = argmin(0£(©'", 8")/08,8) + s8I, 18] < Q'
and recall that
©" = argming (9L(0' ", 8)/0©,0) + Xe|©]..[©]. < R~
as defined in (36). Because
B{{8", vec(®)"}0°L(©, 8)/0[{vec(®)", BT} "]**{AT, vee(©) T} "}
> 4(co + 1)y/(d, + a2, )log{max(p, mn)}/ (mn) {87, vec(®) "} 3,

we have
F(©,8)-F(©'",8"
> (0£(0'1,8")/00,6 -0 !) + e (|©]. — [0 ||.)
+HoL©',89/08.8 - B + As(IBll — 18'),
with probability at least 1 — 2(mn + p)~! by Lemma A.21. Hence
FO'.8)-F(©,8) < (0£(0',3)/00,0'" - 0)+ e (|0 |, —[©].)
+OL(©',8/08.8" - B) + 2s(18 11 — 18]1)

< (0L(©",39/00,0 8" )+ re (0. — € |.)
+HOL©,8Y/08,8" — B + s (I8 — 18 11)
< (9L(©",8/00,0 —- 8" ) 4 re(|0 -0 L)
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+HOL©,8Y/08,8' — B + s (I8 - B'|1)
= go(@" 1B RN +gs(@1, 8, QY, (39)

where recall that g(©'~", 8%, Q%) = (L(©'", 84)/88,8'—B )+ 2s(|3'—B'|11) and ge (©'~", 8!, RI-1) =
(£(©'1,8)/00,0" -0+ Xo©' 1 ~®" .. The sccond inequality holds because F(©), 3)
is minimized at © and 3, and hence 181 < F(©,8)/\s < F(O®",8)/\g = Q! and |®], <
F(©,8)/ e < F(O' ' 8" /\g < R*~'. Furthermore,
gs(©®1.6,Q) = (0£(01, /08,8~ B') + As(I8° ~ B 1)

= (0c(O',8")/08.8' ~ B) +(0L(O1,8Y)/0B — 0L(©",8)/08.8' ~ B )
+As(IB" — B'll)
(oL(©',8/08.8' ~ B') + AsllB' — Bl
+loL©', 8 /08 — 0L(©", 808218 — B

< gp(0',8',Q") +2030Q" |0 — O . (40)
The last inequality holds by Remark 1 and || — B2 < ||8" — B|1 < 2Q*. Furthermore, because
©' is the minimizer of 1(|© — ©'"! + 771%”% + mAe|®]., we have

IA

8£(®t_1, I@t)
Mm——(mgs

t  @t—1
O -0"" + 90

+mre0|®./00 = 0.
Therefore,

F@e'',p) - F@e,s)
= (0£(8",8")/00 + 1| ©'|./00,8" " — ©')
2L, B
20vec(®)vec(O)
= (0L(®"1,8")/00 + \ed|©|,/00,0" 1 — 6
+(0L(@", 8" /00 — oL(e' ! g /08,0 ! — e
92L(e", B
20vec(©)vec(O)
= (0L(®' 1, 8")/00 + \e0|@®!|,/00,8 ! — ')
825(@**7,3t)
Ovec(©)vec(O)
2L, B
20vec(®)vec(O)
(0L(©1,3/00 + \ed| O], /00,0 — 6
82£(@**,ﬂt>
Ovec(®)vec(©)

+{vec(®"1) — vec(®@")}T T {vec(®"1) — vec(@®")}

+{vec(®"1) — vec(®@")}T T {vec(®"1) — vec(@®")}

—{vec(®"1) — vec(@")}T = {vec(®"1) — vec(@®)}

+{vec(®"1) — vec(®@")}T T {vec(®"1) — vec(@®")}

\%

—{vec(®"1) — vec(@")}T = {vec(®"1) — vec(®")}

82£(®**,,3t)
Ovec(®)0vec(O)
> (1/m —oe)|©" —O'|I7, (41)

= 1/771||('-)t_1 - 0% - {VQC(@t_l) — vec(©")}T T {VGC(@t_l) — vec(©")}

where ©®* and ©®** are points on the line between ©'~! and ©*. Hence

| — @'} < (F(©'".8") ~ F(©'.8)}/(1/m — oo).
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The last inequality holds by the fact that ||92£(©**, 3")/0vec(®)dvec(®)T||s < oe as shown in

Remark 1. Combining (40), (41), Lemmas A.22 and A.23, we obtain that with probability at least

1 — 2max(p,mn)~! — 2(mn)~ 1,

{gg(@)t_l,ﬂt,Rt_l) + gﬁ((_)t—l’/gt7Qt)}2

Hgo(©'™,B" R + 95(0",8",Q")* + 4056 (Q")?|©' " — O[3}
4202RY? m{F(©'", B") - F(e',5")}

+2(2Q")?/n{F (@', 6") - F(©', ")}

+oje (Q){F(O', B") — F(©',8}/(1/m — ve)]
Ct){F(e',8") — F(©',8)} + C(t){F(©',8") - F(e', )}
Ct){F(e,8") ~ F(O',87)},

IN A

where C(t) = max{32(R'~")?/m + 16036 (Q")*/(1/m — 0e),32(Q")?/n}. Combining with (39), we
have

{F(©'',8") — F(6,8)})* < C(t){F(®'",8) - F(©,8) - F(&',8""") + F(6,8)}

with probability at least 1 — 2max(p, mn)~* — 2(mn)~! — 2(mn + p)~'. Let A, = F(©' ', 3" —
F (0, 3), the above inequality can be written as

Apy1 < Ay — %(AQQ = A, {1 - CA(;)} <A {1 + CA(;) }_1.

Taking inverse, we get A"} > A7+ C(t)71, hence Al > Ayt + S h_o C()~", which leads to

1
1/{F(©°,8") — F(©,8)} + X} _o1/C(k)

Apq <

Hence when

— 1 1
1/C(t) > < - — =~—=_ (>
tz:; / ()_{6 F(@O,ﬁo)—F(@”@)}
we have
F(GTHBT)_F(@H@)SQ

with probability at least 1 — 2 max(p, mn)~! — 2(mn)~! — 2(mn +p)~t > 1 — 6(mn + p)~!. Hence
F(O®T,8"%) is the e-optimal solution for (1) with probability at least 1 — 6(mn + p)~'. This proves
the result.

I. Proof of the Consistency of Pseudo-likelihood Estimator in Regression
with Finite Dimensional Parameter

Theorem A.1 Assume Condition (C1)-(C6) hold and B is finite dimensional. Furthermore, as-
sume the conditional density of Y; given X; is f(Yl-,ﬁOTXl-). Let B be the maximizer for the pseudo-
likelihood

LB)=n""t Z Li(B),
where L;(B) = R;i4;(8),

0(8) = |log{#(¥:. 87X)) — log { / f(n,ﬁng(X)dXH ,
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R; is the missing indicator for the ith observation. Assume X; and R; are independent given Y;.
We have B 2 Bo-

Proof: Everywhere in this proof, E denotes an expectation taken with respect to the original true
distribution that governs the data generation process f(Y, BOTX) g9(X), for example, for any func-
tion a(X,Y), F{a(X,Y)} = [a(x,y)f(y,B; x)g(x)du(x,y). Let fo(Yi, BTX;) be the derivative of
f(Tm, BX;) with respect to 37X, Sa(Y;, X;, B) be the derivative of logf(Y;, 87 X;) with respect to
B~ X,;, define

9L (B)

op

N~ L ROLBTX) o [ AV B X)g(X)XdX
;Rz{f(n,ﬁTXi) i J £(Ys, BT X)g(X)dX }

S(Y;,X;,8) =

= 'Y RS (Y, X0, B)X; — RiEg{S2(Yi, X, B)X|Y;}.

i=1

Here, the notation Eg means an expectation is taken with respect to the distribution f(Y, ﬁTX)g(X).
It is clear that

OB{L(B)} _ . [OL(B) B . -

T‘ﬁ:ﬁo - E{ a8 ‘5_30} = E{S(Y;, X, 8)} = 0. (42)
Also,

9*L(B)

o~ T = n_l . Ri (H(Y;)Xwﬂ)_E {H(Y;7X17ﬂ)|}/;}

B SV X B2V} + [Ep{S(Vi, X, B[V ) (43)

where H(Y;, X, 3) is the second partial derivative of log{ f (Y, BYX;)} with respect to 3. Now using
the independence between X; and R; given Y;, we have

0?L
E{aﬁa(;T)ﬁ—ﬁo} = E(E [RZH(}[MX’LMB”Y:L} *E(RAK)EﬁD{H(Y;,X“,BO)D/;})

~E{E(RY:) (B {S(Y:: X0, 8y) %2V} — [B{S(Y:, X, By) [} ) }
—E {E(Ri\Yi) (E{SO/;,Xi»ﬂo)@Q‘Yi} - [E{S(E,Xiﬁo)IYé}]@z)}
— B [B(R:[Y,)var {S(Y., X1, By)| Vi) (44)

which is negative definite. Note that Eg = E according to our definition of the two notations. Now
by Taylor expansion, let r be a vector with ||r||z = 1, assume r times the third derivative of £(3)
with respect to 3 has bounded Lo norm, for any € € (0,1/2), we have

E(ﬁo + rn71/2+6)

= 2y + 52

—1/2+e + %rT g;ﬁaf"g
9L(B)

05 |ﬁ—ﬁo} + Op(n_l/z)} rn /2t

1 0’L
* §rT {E { aﬁa(gT) |ﬁ—ﬁo} + Op(l)} rn” 4 O, (n2HE)

|@:,301‘7l |ﬁ:ﬂ0 rn71+26 + Op(n73/2+36)

= L(Bo) + {E{
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2
= () + 5 E{ Sl e o), (15)
where the second equality holds by the central limit theorem, the third equality holds by (42). Now
by (44), E {82£(,8)/8,88ﬁT|ﬁ:g0} is negative definite. Hence, £(8,) > L(By+r/y/n) in probability
when n is sufficiently large for any r with |r|2 = 1. Therefore, there is a maximizer for L(8) in the
ball with center B, and radius n=/?*¢. Let the maximizer be 8. Obviously |3 — By| < n=/?¢ in
probability, hence [Ai N Bo-
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