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Abstract—In the multi-armed bandit (MAB) framework, we 
investigate the problem of learning the means of distributions that 
are associated with a finite n umber o f a rms u nder a  monotonic 
constraint. Different from the traditional MAB, our problem 
involves a parameter constraint and a limited trial budget (i.e., 
the number of arm pulls is small). However, the number of 
training samples can be as large as possible through (infinite) 
simulations, while each training sample is of limited size. This 
situation arises when some additional information is provided 
before the trial starts and each arm pull (or testing) could be of 
extraordinary cost. For example, in cancer dose-finding clinical 
trials, higher toxicity probabilities are typically associated with 
higher dose levels (i.e., the monotonic dose–toxicity constraint), 
and the loss due to the drug’s toxicity, side-effects or death of 
patients can be enormous. We formulate this problem in the 
reinforcement learning (RL) paradigm, which is referred to as a 
bandit arm localization problem. We propose a novel approach 
in a double deep Q-learning framework, which is integrated with 
a state-of-the-art statistical model to preserve the parameter 
constraint and develop a more effective learning strategy. The 
double deep Q-learning model can be trained with a large (can 
be as large as infinite) n umber o f s imulated t rials, w hich i s the 
first t ime to cast dose finding in  the RL  framework. We  evaluate 
the performance of our approach through extensive simulation 
studies in realistic settings of phase I clinical trials. The proposed 
double deep Q-learning is shown to outperform the baseline 
methods in cancer dose-finding trials.

Index Terms—deep Q-learning, dose finding, multi-armed 
bandit, phase I clinical trial, reinforcement learning

I. INTRODUCTION

Multi-armed bandit (MAB) problems have been studied
extensively on the basis of combining exploitation and ex-
ploration schemes [1]–[3], which witness important applica-
tions in clinical trials. The reinforcement learning (RL) has
been widely used in various health care problems [4]. We
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reformulate the dose-finding problem in cancer clinical trials
as the first step of development of a new treatment in the
RL paradigm. In a phase I cancer trial, patients may develop
negative responses (toxicities or side-effects) depending on the
amount of treatment (dosage) they receive [5]. The probability
for patients to develop the dose-limiting toxicity (DLT) in-
creases with the amount of dosage that is administrated. The
goal of such clinical trials is to identify the maximum tolerated
dose (MTD), which corresponds to the amount of drug that
would cause a certain proportion (e.g., the target toxicity rate is
30%) of patients to experience the DLT outcomes. In practice,
a limited number of patients are enrolled into a phase I clinical
trial, where only several prespecified (typically fewer than 10)
dose levels are tested to find the MTD. In this context, the
dose assignment is carried out sequentially, i.e., the decision
on which dose level to choose for the next patient or the
next cohort of patients (the cohort size is typically less than
3) is based on the choices and outcomes of the previously
treated patients in the trial. After all the patients in the trial are
completed with treatment and outcome evaluation, the MTD
is estimated using all the information accumulated in the trial
(e.g., the number of patients experiencing DLT at each dose
level). The essential problem is to identify the target arm
(MTD) using limited samples that are sequentially drawn from
the distributions associated with the arms.

Viewing each dose level as one arm in the bandit, our setup
is similar to the MAB problem [6]. However, there are two key
features of the dose-finding problem that are distinct from the
typical MAB. First, there is additional information about the
underlying distributions of the arms because higher dose levels
naturally imply higher toxicity probabilities. More specifically,
we know whether one arm’s expected “reward” (or response)
is larger than another based on the dose levels. This additional
information is referred to as the monotonic relationship among
the toxicity probabilities of the investigated doses, i.e., the DLT
rate increases as the dose increases. Second, the goal is not to
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maximize the accumulated “reward”; instead, the objective of
the above problem is to identify the arm with the total “reward”
closest to a predefined target. These distinctive features of
the dose-finding design make it essentially different from the
conventional MAB problem and its various extensions [7]–[9].

Although the aforementioned two problems (MAB versus
dose finding) are distinct, they share the same exploration–
exploitation dilemma. More specifically, the more patients are
tested at one dose level, the better estimation of the toxicity
probability we can obtain for that dose level. However, because
the total number of patients is limited for one trial, we need
to develop an effective strategy to identify the target arm as
accurately and efficiently as possible, by taking advantage of
the monotonic relationship. We define this new framework as
a bandit arm localization (BAL) problem, which is common in
cancer clinical trials but has never been studied before under
the RL paradigm [10]. The BAL problem is well motivated by
many real applications. Another example is dynamic pricing
in auctions. Suppose there are a total of T rounds of auction,
and at each round t, the algorithm chooses a price pt and
offers one item for sale at that price. The absentee bidder, who
cannot show up in person at the auction, may have in mind
some value vt for that item, where vt is drawn independently
from some fixed but unknown distribution. The customer buys
the item if and only if pt < vt. It is natural to assume that
the higher the price, the fewer the customers would engage
in bidding on the item. The goal of the BAL algorithm is
to determine the proper price that has the largest potential to
attract a proportion (e.g., 80%) of customers to participate in
the auction. Similar problems also occur when one needs to
decide how much resource should be invested in a project to
achieve an acceptable output with a certain level of confidence
by a trial procedure.

To properly incorporate the monotonic relationship in dose
finding, many statistical methods, e.g., the Bayesian ap-
proaches [11]–[14], have been developed. However, these
methods have major issues that may hamper the optimality
of the design. In most of these methods, the choice of the
next arm (dose level) is completely based on the estimation
of the target arm, which could be wrong due to bias or model
misspecification, especially at the early stage of a trial when
the data are very sparse. As the goal of a trial is to achieve the
best estimation based on all the observed responses at the end
of the trial, a new strategy can be devised to account for future
rewards rather than a myopic design using a greedy approach
such as the continual reassessment method (CRM) [11]. To
our knowledge, all methods for dose finding adopt a greedy
approach, which cannot guarantee the optimality in the long
term [15].

We propose a deep Q-learning framework, which considers
the need for exploration and models future rewards explicitly.
The main contributions of our work are threefold: First, we
formalize the bandit arm localization problem under the RL
paradigm and adopt a Q-learning model to solve or approx-
imate it. Second, to take advantage of the monotonic rela-
tionship, we incorporate the state-of-the-art statistical model

into the RL framework, so that the regression model can be
seamlessly integrated in the RL framework. Third, we evaluate
our approach under both fixed and random scenarios and the
proposed Q-learning model outperforms the existing baseline
methods.

II. RELATED WORKS

Multi-Armed Bandit The MAB problems [8], [16] are
built upon the popular theoretical models of exploration–
exploitation trade-offs in machine learning. There are various
extensions of the traditional MAB problem, such as bandits
with knapsacks [17], which deals with the case where several
constrained resources are consumed by the algorithm, such
as the inventory of products in the dynamic pricing problem.
There are similar problem settings in the budget-limited MAB
[18], [19] or the best-arm identification problem [20]–[23].
Many works focused on solving the dose-finding problem
by utilizing theoretical tools developed for the MAB. For
example, in [24], [25], the patient allocation problem in
clinical trials is addressed based on Gittins index [26], which
is a method originally designed for MAB. In [2], a Thompson
sampling-based algorithm is proposed for dose-finding clinical
trials. However, the dose-finding problem has never been
studied under the RL framework, because all existing methods
take a greedy approach that misses the exploration mechanism.

Bayesian Approaches Many statistical methods have been
proposed to solve similar problems [11], [15], [27], [28]. The
most popular one is called the CRM [11], which takes a
Bayesian regression approach to handling the additional mono-
tonic constraint and the uncertainty of the toxicity probability
at each dose level. However, statistical methods, such as the
CRM and its variants, are all greedy algorithms in essence.
They make the best guess of the target arm (e.g., the dose level
whose toxicity probability closest to the target) based on all
the available information, while no exploration of the arms or
strategies is considered for potentially better future estimation.
In other words, all the existing methods are typically myopic
and often cannot deliver an optimal solution at the end of the
trial.

To achieve the optimality in the long term, we propose
a deep RL framework to solve the BAL problem. Further-
more, we utilize the monotonic relationship and model the
uncertainty of the environment. We also integrate a Bayesian
regression model into the RL framework when we define the
agent’s environment. Although the sample size of each trial
is limited, we can generate as many as we wish simulation
scenarios to train the double deep Q-learning model. In that
sense of big data, the number of simulations for model training
can be infinite, while the parameter learning would reach
saturation after a large number of simulations are conducted.

III. PROBLEM FORMULATION

The BAL problem itself is new and distinct from the MAB,
as formulated below. There is a machine with a sequence of
finite K arms indexed by k = 1, . . . ,K, and the response
of each arm follows some distribution denoted by Fk. The
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means of these distributions are denoted as µk’s, which are
unknown but satisfy a monotonic relationship, µj < µk, for
1 ⩽ j < k ⩽ K. The arms are pulled (or experimented)
sequentially, and the total number of arm pulls or the horizon
is set as T . When the kth arm is pulled at round or time
step t, a response xt is observed, which is generated from the
underlying distribution Fk. Given the information collected up
to time step t, an algorithm determines which arm to choose
next. We are interested in identifying the arm k∗ that has the
response rate closest to a given target ϕ,

k∗ = arg min
1⩽k⩽K

|µk − ϕ|. (1)

Due to its novel definition which is related to but different
from the traditional MAB problems, the BAL problem is
summarized in Definition 1.

IV. NEW APPROACH

Considering the sequential arm pulling (or dose testing)
procedure as a Markov chain [29], we can formulate the BAL
problem as a Markov decision process [30] and further solve
the problem in the RL paradigm.

A. Reinforcement Learning

For the BAL problem, we define the four conventional
components of the RL framework as follows.

State Suppose that arm k has been experimented for nk

times, and we observe zk responses and nk−zk non-responses.
For each arm, the information can be represented as a 2-
dimensional vector (zk, nk − zk). The state at time step t is
designated to be st = {(z1, n1 − z1), . . . , (zK , nK − zK)},
which is a 2K-dimensional vector.

Action The choice that the agent makes at time step t ∈
{1, . . . , T} corresponds to which is the next arm to pull (or
test).

Environment Let µk be the unknown probability parameter
(mean) for the distribution associated with the kth arm. The
environment of the RL paradigm can be defined as the large
number of various scenarios that the algorithm aims to explore
and estimate the mean µk. We utilize a scenario-generating
process to mimic this environment, where one scenario corre-
sponds to a sequence of arms with their means µk’s satisfying
the monotonic constraint, i.e., µ1 < · · · < µK . Note that each
scenario corresponds to one episode (or one trial). It is natural
to assume the response from each arm follows a Bernoulli
distribution, x(k)

t ∼ Bernoulli(µk), where x
(k)
t represents the

response if arm k is pulled (or experimented) at time step
t. As a result, let kt denote the arm pulled at time step
t, kt ∈ {1, . . . ,K}, and then zk =

∑T
t=1 x

(k)
t I(kt = k),

where I(·) is the indicator function. In the training phase, a
sequence of K arms with increasing response probabilities
would be randomly generated as part of the environment
to train the agent. Furthermore, a statistical state-of-the-art
model is integrated into the environment. By adopting the
statistical model into the RL framework, we can incorporate
the monotonic constraint explicitly to enhance the estimation

accuracy. More specifically, at the last time step T , we estimate
the response rate µ̂k for each arm using the statistical model.

Reward The aim of the RL algorithm is to identify the arm
k∗ whose response rate is closest to a pre-specified target ϕ.
At each time step t, an action at is taken, which means that
the arm at ∈ {1, . . . ,K} is pulled. If the current time step has
not reached T , i.e., t < T , the intermediate reward function
(which can improve the next arm selection) is defined as

Rt =

{
1 if at = k∗,

−λ|at − k∗| otherwise.
(2)

where λ is a hyper-parameter controlling the degree of penalty
for inferior selections. In the experiments, λ is set to be 0.5,
and the distance of the pulled arm from the optimal arm k∗,
|at − k∗|, imposes more punishment on those selections that
are far away from the target arm.

At the last time step T , the CRM model is used to estimate
the response rate µ̂k for each arm, and the estimated target
arm is k̂∗ = argmin1⩽k⩽K |µ̂k − ϕ|. To make the reward
mechanism consistent with the BAL’s primary goal, the final
reward function for the action taken at time step T is defined
as

RT =

{
T/2 if k̂∗ = k∗,

−T/2 otherwise.
(3)

With specification of these key components in RL, we
can solve the problem by learning a value function (e.g.,
Q-function). The Q-value of taking action at at state st
under policy π is denoted as Qπ(st, at), which represents the
expected return at time step t,

Qπ(st, at) = Eπ

(
T−t∑
k=0

γkRt+k

∣∣St = st, At = at

)
,

where γ is the discount rate and policy π represents a
probability distribution over the set of actions at, given the
current state st. In the deep Q-learning framework, this Q-
function can be modelled by a deep neural network (DNN),
called the Q-network,

Qπ(st, at) = DNN(st, at).

Given the historical data up to time step t, i.e., St = st,
the Q-network aims to estimate Qπ(st, at), so that the agent
can choose the arm that maximizes Qπ(st, at). As detailed
in Algorithm 1, we adopt a double deep Q-learning network
(DDQN) [31], [32] as the backbone algorithm to learn the
unknown parameters in the Q-network. Following the setting
in the DDQN, a replay memory is used to store the agent’s all
past experience at each time step under different scenarios (or
episodes). The DDQN includes a target Q-network and an ac-
tion Q-network, which are updated under different frequencies
and are synchronized periodically.

B. Continual Reassessment Method (CRM)

Among many statistical methods, we select one of the most
popular methods, called the CRM [11], as another component
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Definition 1: Bandit Arm Localization (BAL) Problem
Design Parameters: K arms with each indexed by k, the total number of pulls T , and the target response rate ϕ.
Goal: Identify the optimal arm k∗ = argmin1⩽k⩽K |µk − ϕ|, where µk is the unknown mean of the distribution associated with arm k.
Monotonic Constraint of Bandit Arms: µ1 < · · · < µK .
At each time step, t = 1, . . . , T :

(i) An algorithm selects an arm kt ∈ {1, . . . ,K}.
(ii) Arm kt is pulled and then a response xt is observed.

Once the total consumption of the pulling resource reaches its budget or horizon T , the optimal arm k̂∗ = argmin1⩽k⩽K |µ̂k − ϕ| is selected,
where µ̂k is the estimate of µk based on all the responses X = {x1, . . . , xT }.

Fig. 1. The proposed reinforcement learning framework for the bandit arm localization problem.

of our approach. The CRM takes a Bayesian approach to
dealing with the monotonic relationship and the uncertainty
of the response rate for each arm. The CRM assumes a prior
dose–response (or arm–response) curve, and then continuously
updates this curve based on the observed accumulative out-
comes from the pulled (or tested) arms in the trial. At each
time step t, the next arm is chosen to be the one with an
estimated response rate closest to the target. For the CRM,
a single-parameter model is typically adopted, i.e., for the
response rate µk(·) of arm k,

µk(α) = p
exp(α)
k ,

where α is an unknown parameter and 0 < p1 < · · · < pK < 1
are prespecified toxicity probabilities at the K dose levels.
Suppose that arm k has been pulled nk times, and zk responses
have been observed. Let D denote the observed data in the
trial, D = {(zk, nk), k = 1, . . . ,K}. Based on the binomial
distribution, the likelihood function is

L(α|D) =
K∏

k=1

{pexp(α)k }zk{1− p
exp(α)
k }nk−zk .

In the Bayesian paradigm, the response rate of arm k can be
estimated by the corresponding posterior means of µk(α),

µ̂k =

∫
p
exp(α)
k

L(α|D)f(α)∫
L(α|D)f(α)dα

dα,

where f(α) is a prior distribution for the parameter α and
typically a normal prior distribution N(0, σ2) is adopted.

During the training stage, a reward is calculated at each
time step t based on the correctness of the arm selection
following (2) and (3). This strategy encourages the agent to
learn more effectively how to localize the target arm by taking
the monotonic relationship into consideration, which coincides
with the overall goal of the BAL problem.

At the end of the trial when the sample size is exhausted,
the CRM model is used at time step T to estimate the response
rate for each arm based on all the observed data. Finally, the
best arm is selected as the one with the estimated response
rate closest to the target.

V. EXPERIMENTS

We apply the proposed BAL approach to a real dose-
finding problem for phase I clinical trials in oncology. This
application is of paramount importance due to cancer treatment
development that may potentially save millions of lives. We
consider five dose levels (arms) and assume that the toxicity
probabilities increase monotonically with respect to the doses,
i.e., the monotonic constraint.

The target toxic probability is ϕ = 0.3. Following the
CRM setting in [12], at each time step we treat a cohort of
three patients at the selected dose level and then observe the
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Algorithm 1 Double deep Q-learning for bandit arm localization
1: Initialize the updating frequencies for the target Q-network as Ctgt and for the action Q-network as Cact, the capacity of

the replay memory as Cmem;
2: Initialize the action Q-network Q with random weights θ and the target Q-network Q′ with weights θ′, set θ′ = θ;
3: for n ←1 to N do
4: Randomly generate the response rate (mean) for all arms {µ1,. . . , µK}
5: for t ←1 to T do
6: if t = 1 then
7: Select the first arm
8: else
9: With probability ε select a random neighbor arm at

10: With probability 1− ε set at = argmaxa Q(st, a; θ)
11: Observe response xt from the selected arm at and update the state st+1

12: if t = T then
13: Estimate the response rate by the CRM model and obtain reward rT by (3)
14: else
15: Obtain reward rt by (2)
16: end if
17: Store transition (st, at, rt, st+1) in the replay memory
18: end if
19: if n mod Ctgt = 0 then
20: θ′ = θ
21: end if
22: end for
23: if n mod Cact = 0 then
24: Sample a random mini-batch of transitions (sj , aj , rj , sj+1) from the replay memory

25: Set yj =

{
rj for terminal sj+1

rj + γmaxa′ Q′(sj+1, argmaxa′ Q(sj+1, a; θ); θ
′) for non-terminal sj+1

26: Perform a gradient descent step on {yj −Q(sj , aj ; θ)}2
27: end if
28: end for

corresponding responses. Because there is little information
about the distribution associated with each arm, for the sake
of safety, the first cohort is treated at the lowest dose and
only the neighbors of the previous selected dose level are
considered for the next time step in the trial, i.e., no dose
skipping. The maximum sample size is set as 30, but the
number of simulated scenarios/trials for training our model can
be as large as possible (i.e., we can simulated as many trials as
possible). For the CRM model, the initial guesses of the toxi-
city probabilities are chosen by the model calibration method
of [33]: (p1, p2, p3, p4, p5) = (0.01, 0.09, 0.30, 0.54, 0.73). We
take the prior distribution of α as a normal distribution with
mean 0 and variance σ2 = 2. Following Algorithm 1, we train
our Q-network using the Adam algorithm [34]. The output of
the Q-network is a K-dimensional vector representing the Q-
value Qπ(st, at) for at ∈ {1, . . . ,K}. The Q-network consists
of six fully connected layers with {2048, 2048, 1024, 256, 256,
5} neurons respectively. Each fully connected layer is followed
by a ReLU function except for the last layer. The replay
memory capacity is set to be Cmem = 18000. In each mini-
batch, 50 transitions (sj , aj , rj , sj+1) are randomly selected
from the replay memory. The learning rate is set to be 0.001,

and our model is implemented by Pytorch [35].

A. Evaluation

In a typical RL problem, an environment with certain rules
or dynamics is defined so that the algorithm can be tested with
real performance on the system. However, the BAL problem
deals with an uncertain environment (i.e., the distributions
associated with arms are unknown and the target can be any
one of the arms under investigation), and therefore we can only
test the performance of our algorithm via simulation studies.
As the underlying true response rates of the arms are unknown,
any form of the assumption on these unknown response rates
may deviate from the truth and thus introduce bias. We
first introduce several baseline approaches and then evaluate
different methods under both fixed scenarios and randomly
generated scenarios (to avoid cherry picking scenarios).

B. Baseline approaches

Although the BAL problem is different from the MAB, it
still can be formulated in the MAB paradigm in an approxi-
mate sense. For comparison, we adapt two best-arm identifi-
cation algorithms to address this problem because the settings
are similar. One is the upper confidence bound exploration
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TABLE I
SIMULATION RESULTS WITH A TOXICITY TARGET ϕ = 30% UNDER FIXED SCENARIOS 1–5.

Model Recommendation percentage at each dose level DLT (%)1 2 3 4 5
Scenario 1 0.30 0.40 0.55 0.60 0.65
UCB-E 47.8 29.7 11.2 7.2 4.1 46.4
APT 47.7 31.4 11.1 6.4 3.3 46.2
CRM 70.2 28.2 1.5 0.1 0.0 33.8
DDQN 55.3 39.6 5.0 0.2 0.0 38.6
Scenario 2 0.20 0.30 0.60 0.70 0.75
UCB-E 53.6 33.9 7.9 2.9 1.7 42.1
APT 43.9 44.8 7.3 2.7 1.3 42.7
CRM 29.5 66.8 3.7 0.0 0.0 28.5
DDQN 18.9 76.1 5.0 0.0 0.0 35.1
Scenario 3 0.06 0.15 0.30 0.55 0.60
UCB-E 30.2 20.9 30.2 11.1 7.7 30.2
APT 12.2 29.5 40.6 11.4 6.3 30.2
CRM 0.2 27.1 66.7 5.8 0.1 24.0
DDQN 0.1 20.1 72.6 7.0 0.2 35.4
Scenario 4 0.06 0.08 0.10 0.30 0.50
UCB-E 28.8 10.8 13.8 31.5 15.1 21.1
APT 14.5 16.5 17.2 37.6 14.2 20.3
CRM 0.2 6.2 26.4 60.3 6.9 18.3
DDQN 0.0 0.7 27.6 64.1 7.5 27.3
Scenario 5 0.02 0.06 0.10 0.20 0.30
UCB-E 23.6 7.1 12.9 26.1 30.3 14.6
APT 5.7 13.4 17.3 33.8 29.9 14.4
CRM 0.0 1.1 15.2 48.1 35.6 15.5
DDQN 0.0 0.1 5.8 46.6 47.5 19.7

UCB-E: upper confidence bound exploration, APT: anytime parameter-free thresholding, CRM: continual reassessment method, DDQN: the proposed double
deep Q-learning network. Correct selection percentages are highlighted in boldface and dose-limiting toxicity (DLT) percentages show the aggressiveness of
the methods.

(UCB-E) algorithm [20] and the other is the thresholding
algorithm [21]. However, the monotonic constraint, which is
the unique feature of BAL, is not taken into consideration in
the adaptation of both algorithms.

UCB-E algorithm: Following the adaptation in [21], at
each time step t, the UCB-E algorithm pulls the arm that
minimizes Bk(t), where Bk(t) = |µ̂k(t) − ϕ| −

√
a/Tk(t),

and Tk(t) denotes the number of pulls assigned to arm k
till time step t and a is a hyper-parameter controlling the
degree of exploration. We choose a = (T − K)/H , where
H =

∑K
i=1 ∆

−2
k characterizes the degree of the problem

difficulty and ∆k = ϕ − µk is the gap between the target
response rate and the true response rate of each arm. This
algorithm requires the knowledge of H , and the calculation of
H depends on µk, which is a strong assumption [21].

Thresholding algorithm: The anytime parameter-free
thresholding (APT) algorithm is introduced to solve the thresh-
olding bandit problem in [21]. Given a fixed time horizon T ,
the goal of the thresholding bandit problem is to find the set
of arms whose response rates are above the threshold, up to
a given precision ϵ, i.e., to correctly discriminate arms with
µk > ϕ + ϵ from those with µk < ϕ − ϵ. We adapt the APT
algorithm by simply changing the output or the recommenda-
tion as the arm with the index k̂∗ = argmin1≤k≤K |µ̂k − ϕ|.
Following the setting in [21], the precision ϵ is set to be 0.1.

C. Fixed scenarios

We first evaluate our model with five representative fixed
scenarios (i.e., the toxicity probabilities of all arms are pre-
fixed), where the MTD is located at different dose levels.
For each scenario, we carry out 10000 simulated trials. The
result is shown in Table I, where we can see that our DDQN
approach yields the best performance in four out of the five
scenarios and it achieves the best overall performance. Another
observation is that both the CRM and DDQN approaches
avoid selecting a dose level whose toxicity probability is much
higher or much lower than the toxicity target. This indicates
that by taking the monotonic relationship into consideration,
the statistical model can reduce the risk of making extremely
poor decisions. As shown in Table I, the overall performances
of both UCB-E and APT algorithms are rather poor compared
with others, possibly due to the following two reasons. First,
the total number of arm pulls is small in the BAL problem,
i.e., the trial budget is rather limited. For example, in the dose-
finding problem, a typical phase I trial has a small sample
size, which is often as low as 30 to 50 patients [12]. With
such a limited budget, it requires that the algorithm should
be able to locate the target with high efficiency and accuracy.
However, typical MAB algorithms are designed to converge
after a large number of pulling rounds, and their capacity is
limited to dealing with such low-budget situations. Second,
for the traditional MAB algorithms, there is no mechanism to
account for the monotonic relationship specified in the BAL
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(a) CRM with MTD selection 70.2% (k∗ = 1) (b) DDQN with MTD selection 55.3% (k∗ = 1)

(c) CRM with MTD selection 66.8% (k∗ = 2) (d) DDQN with MTD selection 76.1% (k∗ = 2)

(e) CRM with MTD selection 66.7% (k∗ = 3) (f) DDQN with MTD selection 72.6% (k∗ = 3)

(g) CRM with MTD selection 60.3% (k∗ = 4) (h) DDQN with MTD selection 64.1% (k∗ = 4)

(i) CRM with MTD selection 35.6% (k∗ = 5) (j) DDQN with MTD selection 47.5% (k∗ = 5)
Fig. 2. Average number of patients allocated at each dose level over 10000 simulations under the five fixed dose–toxicity scenarios. Sub-figures (a, c, e, g,
i) are results from CRM and sub-figures (b, d, f, h, j) are results from DDQN, corresponding to fixed scenarios 1–5.
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δ = 0.05 δ = 0.07

δ = 0.10 δ = 0.15

Fig. 3. Simulation results for the MTD identification based on 5000 randomly generated dose–toxicity scenarios with the average probability difference of
δ = 0.05, 0.07, 0.10 and 0.15 around the target toxicity probability ϕ = 0.3, respectively.

problem, which also leads to inefficiency in identifying the
target arm.

We also show the average number of patients allocated
at each dose level over 10000 simulations under the fixed
dose–toxicity scenarios in Figure 2. Overall, the CRM is
more conservative compared with the DDQN as it tends to
assign more patients to the dose levels lower than the target
level. This is understandable because the CRM is a myopic
design which only focuses on the best estimation so far
with no mechanism to explore new arms (i.e., CRM is less
adventurous). While the DDQN is more aggressive due to its
exploitation and exploration features, it typically assigns more
patients to the target dose level (referring to scenarios 2, 3,
5), which is more desirable in practice. As expected, the DLT
percentage under the DDQN is slightly higher than that under
the CRM, because the DDQN explicitly employs exploration
of untried arms and thus it can locate the MTD more accurately
but is slightly riskier.

D. Random scenarios

To avoid cherry-picking scenarios, we further evaluate our
model under randomly generated scenarios following the ap-
proach of [36], where the target response rates are located at
various positions. To evaluate the performances of different
approaches under various degrees of the problem difficulty,
we set the average probability difference between the target
dose and the adjacent doses to be δ = {0.05, 0.07, 0.10, 0.15},
respectively. Clearly, the case with δ = 0.05 is the most diffi-

Fig. 4. MTD selection percentages in the ablation studies when ablating
the intermediate rewards, CRM and mask operation modules based on 20000
randomly generated dose–toxicity scenarios with different δ’s. Our DDQN
performs the best with the highest MTD selection percentages.

cult situation due to the small gaps of the adjacent doses from
the target, and the one with δ = 0.15 is the easiest situation.
For each setting, we generate 5000 random scenarios. The
simulation results in Figure 3 show the percentages of MTD
selection and MTD allocation under different methods. We
can see that the DDQN approach outperforms the other three
methods under the first three settings with small δ, where
it is relatively difficult to identify the target arm. Similar
to the results under the fixed scenarios, the performances
of the adapted bandit approaches are rather poor, which
implies the importance of taking the monotonic constraint
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Fig. 5. MTD selection percentages based on 20000 randomly generated dose–toxicity scenarios with different sample sizes and different numbers of dose
levels.

Fig. 6. MTD selection percentages based on 20000 randomly generated
dose–toxicity scenarios with different target toxicity rates.

into consideration in the design. We also show other three
measurements related to the safety aspects of a trial in Figure
3, including the percentage of trials that select overdoses as the
MTD, the percentage of patients allocated to overdoses, and
the percentage of patients experiencing DLT. Obviously, the
CRM leads to the lowest risk compared with other methods,
while the DDQN method also yields satisfactory performance
in terms of the three safety measurements.

E. Ablation study

To further evaluate different components’ contributions to
the performance in our DDQN, we carry out the ablation study
as follows. We evaluate the importance of each component by
removing it from our method and rerun the experiments with
the same setting as the original one. We choose three key
components for the ablation study: the intermediate rewards,
the CRM component, and the mask operation.

Intermediate rewards: We set the intermediate reward
to be zero while keeping the final reward the same as the
original setting. As seen from Figure 4, experiments without
intermediate rewards yield inferior results under all four cases
with different δ’s. This phenomenon implies that intermediate
rewards can encourage the model to learn the parameters in
DDQN more effectively during the dose escalation.

CRM: We also run experiments without the CRM module.
In this setting, we adopt the same Q-network to determine the

dose level for the patient assignment as well as estimating the
final MTD for the trial. Except for the case with δ = 0.05, i.e,
the most difficult scenario, the performance without the CRM
module is also worse than that of the original DDQN method,
which implies the importance of the CRM module under
general scenarios. When the scenario is extremely difficult
(e.g., δ = 0.05 so that the neighboring doses are clustered near
the target), the CRM module undermines the performance due
to the model misspecification.

Mask operation: In dose-finding clinical trials, dose
skipping is typically not allowed during dose escalation or de-
escalation for safety reasons. When assigning a dose to each
new cohort of patients, we change the dose level by at most
one level only. To achieve such constrained dose movement,
we introduce a mask operation for the training algorithm. More
specifically, we only compare the Q-values of the neighbors
of the previously selected dose level. We introduce a binary
vector, containing the information about which actions are
available. For example, if the previously selected dose level
is the third one, then the binary vector would be [0, 1, 1, 1,
0], which indicates that only the second, third and fourth dose
levels are available to be selected for the next Q-network. In
Line 10 of Algorithm 1, we can instead use the following
formula with the mask operation to select the best dose level,

at = arg max
1⩽a⩽K

Ma exp {Q(st, a)}∑K
a=1 exp {Q(st, a)}

.

where Ma is a binary mask for the a-th dose level. A similar
mask operation is utilized in Line 25 of Algorithm 1 as well.
We run experiments without the mask operation to validate
its effectiveness. For a fair comparison, we achieve the same
purpose in the experiments without the mask operation by
an alternative implementation as follows. We allow the Q-
network to select the best action (dose level) but only move
one dose level at most when deciding the dose level for the
next cohort of patients. The results in Figure 4 demonstrate
the effectiveness of the mask operation across the four settings
with different δ’s.

Authorized licensed use limited to: Univ of Calif San Francisco. Downloaded on April 20,2025 at 22:26:47 UTC from IEEE Xplore.  Restrictions apply. 



5252

F. Generalization
To validate the effectiveness of our approach under different

settings, we consider different sample sizes, different toxicity
rates, and different numbers of dose levels. We run experi-
ments for three strong baseline methods, i.e., CRM, UCB-
E+CRM, and Threshold-type+CRM. To take advantage of the
monotonic relationship, we use the CRM for the final MTD
estimation under UCB-E+CRM and Threshold-type+CRM.

For the experiments with different numbers of dose levels,
we set the target toxicity rate as 0.3 with sample size 60. To
explore different target toxicity rates, we fix the sample size
as 30 and the number of dose levels as 5. Under different
sample sizes, the target rate is set as 0.3 with 5 dose levels.
Figures 5–6 show that our DDQN approach outperforms the
three baseline methods across all the settings. As the sample
size increases, the gaps between our DDQN and other methods
become larger, which indicates our method is more efficient
in utilizing the available information.

VI. DISCUSSION

In traditional RL, it is relatively easier to train an agent
because the reward and environment are well defined in
comparison with BAL. The environment of BAL is more
uncertain because there are an infinite number of dose–toxicity
random scenarios with MTD located at different positions or
sometimes the MTD does not even exist. Our work is the first
attempt to solving dose finding problems using RL, which
shows promising results in phase I clinical trials. Due to the
large parameter space of the deep Q-learning and the limited
sample size of each trial, our method may not be robust enough
to handle all possible scenarios in dose finding.
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