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Abstract
In clinical trials, there often exist multiple historical studies for the same or
related treatment investigated in the current trial. Incorporating historical data
in the analysis of the current study is of great importance, as it can help to
gain more information, improve efficiency, and provide a more comprehensive
evaluation of treatment. Enlightened by the unit information prior (UIP) con-
cept in the reference Bayesian test, we propose a new informative prior called
UIP from an information perspective that can adaptively borrow information
from multiple historical datasets. We consider both binary and continuous data
and also extend the new UIP to linear regression settings. Extensive simulation
studies demonstrate that our method is comparable to other commonly used
informative priors, while the interpretation of UIP is intuitive and its implemen-
tation is relatively easy. One distinctive feature of UIP is that its construction
only requires summary statistics commonly reported in the literature rather
than the patient-level data. By applying our UIP to phase III clinical trials for
investigating the efficacy of memantine in Alzheimer’s disease, we illustrate its
ability to adaptively borrow information from multiple historical datasets. The
Python codes for simulation studies and the real data application are available
at https://github.com/JINhuaqing/UIP.

K E Y W O R D S

Bayesian design, clinical trial, Fisher’s information, historical data, informative prior, multiple
studies

1 INTRODUCTION

Prior distributions are crucial in Bayesian data analysis and inference. By incorporating many sources of knowledge, such
as expert opinions and historical data, a properly elicited prior distribution can help to analyze the current data more
efficiently and thus reduce the cost and ethical hazard in clinical trials. With a large number of subjects followed for a long
period of time, large-scale clinical trials are typically expensive. Clinical trials are rarely conducted in isolation, and thus
it is critical to combine multiple samples systematically to improve the analysis of the current study. For example, several
cancer clinical trials on the same or similar types of treatment are often conducted with patients of different ethnicity
groups or disease sub-types and sometimes in different countries.1-3 These trials typically have comparable settings with
similar follow-ups and eligibility criteria, and sometimes use the same endpoints, hence information can be borrowed
from them to improve efficiency of the current trial. It may also happen that several trials investigate different treatments
with the same control arm used,2,4 and thus the data in the control arm are valuable to the current trial as a common
benchmark for comparison.
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A major challenge associated with multiple historical datasets is to determine the amount of information bor-
rowed from each dataset for the current study. Differences in patient populations or other trial-specific settings lead to
heterogeneity among the current trial and historical trials, and thus the full-borrowing strategy is typically imprudent,
as it would inflate the type I error substantially. Moreover, when the total sample size of the historical datasets is large,
the information from historical datasets might overwhelm the analysis of the current study which is not desirable, as the
data from the current study should typically dominate the analysis.

Several methods have been proposed for adaptively borrowing information from historical data. Pocock5 considers
the difference in the parameter of interest between the current and historical datasets and models this difference with a
zero-mean random variable. Ibrahim et al6 propose the joint power prior (JPP) to discount the historical dataset by a power
parameter in the range of [0, 1]. Duan et al7 and Neuenschwander et al8 modify the JPP by adding a normalization term,
which is referred to as the modified power prior (MPP). Banbeta et al9 and Gravestock and Held10 further extend the power
prior to multiple historical datasets with binary endpoints. Using a hierarchical model for the between-trial heterogeneity,
Neuenschwander et al11 develop the meta-analytic-predictive (MAP) prior via deriving the predictive distribution of the
model parameter resulting from the analysis of historical datasets. To further account for the prior-data conflict, Schmidli
et al12 make the MAP prior more robust by incorporating a non-informative component in the prior distribution13 which
is called robust MAP (rMAP). Hobbs et al14 propose the commensurate prior by using a commensurate parameter directly
to parameterize the commensurability or exchangeability between the historical and current data. All the aforementioned
methods can borrow information according to the consistency or exchangeability between the historical and current
datasets. Nonetheless, Pocock’s method and the commensurate prior are typically applicable to the case with a single
historical dataset. When multiple historical datasets exist, the naive extensions for both methods do not take the under-
lying interaction among historical datasets into consideration. For the commensurate prior, when multiple historical
datasets are involved, the formula under the non-Gaussian case would be complicated which causes difficulty in prac-
tice and the interpretations of multiple commensurate parameters may not be intuitive as the commensurability concept
defined by Hobbs et al14 is typically for the case with a single historical dataset. The MAP prior relies on the exchange-
ability assumption and adopts a single parameter to parameterize the heterogeneity between the current and historical
datasets. With a single parameter, the relative contributions of multiple historical datasets are not accounted for, that is,
heterogeneity of the coherence between the current and each historical dataset cannot be incorporated to the model.

Kass and Wasserman15 use the Fisher information to define the amount of information and set the amount of informa-
tion in the prior equal to that of a single observation to conduct Bayesian hypothesis tests using Bayes factors. Motivated
by the information in a single observation, we propose the unit information prior (UIP) as a new class of informative prior
distributions to dynamically borrow information from multiple historical datasets. Unlike other priors which are con-
structed from the likelihood function of historical datasets, the UIP, originated from the information perspective, directly
parameterizes the amount of Fisher’s information in the prior distribution. The amount of information in the UIP is
closely related to the effective sample size (ESS) defined by Morita et al,16 and thus the UIP framework can straightfor-
wardly control the ESS in the prior distribution. Moreover, our method considers the heterogeneity between the current
and historical datasets, which guarantees the efficiency of information borrowing. As it is elicited based on the Fisher
information, often the UIP only requires summary statistics of the historical data that are commonly reported in publica-
tions (eg, point estimates and 95% confidence intervals) rather than the patient-level data. The UIP is directly applicable
to the case with multiple historical datasets, whose parameters have intuitive interpretations.

The rest of this article is organized as follows. In Section 2, we introduce the general framework of the UIP method. In
Section 3, we illustrate the UIP framework in single-arm trials with binary and continuous data, respectively, and discuss
its connection with the power prior, commensurate prior and MAP prior in terms of the conditional prior distribution as
well as making an extension of the UIP to linear models. We also discuss the ESS in connection to the UIP.16,17 Extensive
simulation studies are presented in Section 4 where we demonstrate the dynamic borrowing property of the UIP, and
compare different priors elicited from multiple historical datasets. Section 5 provides an example from six phase III clinical
trials for Alzheimer’s disease to illustrate the behavior of our UIP approach in the real data application. We conclude the
article with a brief discussion in Section 6.

2 UNIT INFORMATION PRIOR

Let D = {Y1, … ,Yn} denote the data of the current trial of sample size n. Suppose that there are K historical datasets
{D1, … ,DK} related to the current study, where Dk = {Yk,1, … ,Yk,nk} denotes the kth dataset of size nk, for k = 1, … ,K.



JIN and YIN 3

The parameter of interest is often the treatment effect, denoted by 𝜃, for the current study, while the counterpart of 𝜃 for
Dk is denoted as 𝜃k for k = 1, … ,K. The likelihood function of 𝜃k based on Dk is denoted by L(k)(𝜃k|Dk).

The UIP is constructed directly from an information perspective under the normal approximation. When eliciting
an informative prior for the parameter of interest 𝜃, we are mainly interested in the accuracy and precision, that is, the
correctness and the amount of information contained in the prior distribution. Under the normal approximation, the
accuracy of the prior distribution is determined by the mean of the prior and the amount of the Fisher information in the
prior is the inverse of the variance. Thus, the UIP framework focuses on the mean and variance of the prior distribution,
and the amount of information in the prior distribution can be explicitly controlled. Moreover, because the UIP only
requires the first and second moments, often the summary statistics of the historical data (eg, point estimates and standard
errors or 95% confidence intervals) would be sufficient to derive the prior distribution, which is the typical case in practice
as the patient-level historical datasets are typically inaccessible.

When considering information borrowing from historical datasets, the parameter of interest 𝜃 is assumed to be close to
the counterpart of historical datasets 𝜃k. Due to heterogeneity among historical datasets, we introduce a weight parameter
wk for the historical dataset Dk to measure the relative closeness between the current dataset D and the historical one Dk.
The mean of the prior is defined as

∑K
k=1wk𝜃k, with the weight parameter wk ∈ (0, 1) and

∑K
k=1wk = 1, where wk can be

also viewed as the measurement of the relative contribution from dataset Dk to the analysis of the current study. The
larger value of wk, the more contribution from Dk.

Following the work of Kass and Wasserman,15 we adopt the Fisher information as the measurement of the amount of
information in the data. As a result, we define the unit information (UI) for 𝜃k in the dataset Dk as

IU(𝜃k) = − 1
nk

𝜕2 log L(k)(𝜃k|Dk)
𝜕𝜃2

k

,

that is, IU(𝜃k) is the observed Fisher information of Dk averaged at a unit observation level. By taking the heterogeneity of
the historical datasets into consideration, the contribution of each historical dataset to the current study would be distinct.
Therefore, the unit information from all the K historical datasets is defined as

∑K
k=1wkIU(𝜃k). We introduce M as the sample

size of the total amount of information borrowed from the K datasets, and then the amount of information contained in the
prior is M

∑K
k=1wkIU(𝜃k). Under the normal approximation, the variance of the prior distribution is

{
M
∑K

k=1wkIU(𝜃k)
}−1

.
Therefore, to adaptively borrow information from different datasets, we formulate the UIP framework as follows,

𝜃|(M,w1, … ,wK ,D1, … ,DK) ∼ 𝜋(𝜃|M,w1, … ,wK ,D1, … ,DK),

with E𝜋(𝜃) =
K∑

k=1
wk𝜃k,

Var𝜋(𝜃) =

{
M

K∑
k=1

wkIU(𝜃k)

}−1

. (1)

As 𝜃k is typically unknown, we adopt the maximum likelihood estimator (MLE) 𝜃̂k to replace 𝜃k while keeping
M,w1, … ,wK as unknown parameters that are determined adaptively by the data. We use the MLE to replace 𝜃k mainly
for two reasons: (i) Such a replacement helps to reduce the complexity of our method; and (ii) The MLE has desirable
asymptotic properties,18 for example, consistency and efficiency. Generally speaking, the MLE has a convergence rate of
Op(n−1∕2).19 As phase III trials typically have relatively large sample size, the MLE is an accurate estimator of the parame-
ter 𝜃k. In many cases, the MLE is simply the sample mean that can be easily obtained. In our experiments, the replacement
of the true mean by the MLE does not affect the performance of the UIP method for the historical data size as low as 50.

As we adopt the normal approximation to link the amount of information and the variance of the prior, the specific
form of 𝜋 is typically chosen as a normal distribution. When the range of 𝜃 is not (−∞,∞), we can use other distributions
with approximately bell-shaped density curves in the range of 𝜃 (eg, a Beta distribution with a moderate variance) or a
truncated normal distribution. Therefore, if 𝜃 is the mean parameter of a normal distribution, the UIP of 𝜃 exactly has
a normal distribution; and if 𝜃 is the rate parameter of a Bernoulli distribution, the UIP of 𝜃 may conform to a Beta
distribution.

The parameter M determines the total number of units corresponding to the amount of information borrowed
from all historical datasets as a whole. It is shown that the value of M is closely related to the ESS defined by Morita



4 JIN and YIN

et al.16 In practice, M can be either fixed when we aim to control the amount of information borrowed from histori-
cal data or unknown by setting a hyper-prior on M. When there is a lack of prior information on M, a non-informative
uniform prior is recommended, as it is a standard practice in Bayesian methods; otherwise, a Poisson distribution can
be used to incorporate the prior information on M in the hyper-prior. When using a uniform prior, a common choice is
M ∼ Uniform

{
0,min(n,

∑K
k=1nk)

}
, which can prevent the historical information from overwhelming the current study.

When borrowing information from historical datasets, the current study should dominate the analysis, while historical
data may play a supplemental role. For the real data application, we set Uniform

{
0,min(n,

∑K
k=1nk)

}
as the hyper-prior

for M, while for simulation studies, unless otherwise specified, we choose M ∼ Uniform
{

0,
∑K

k=1nk

}
to make a fair

comparison with other methods.
It is essential to determine the values of weight parameters which characterize the amount of information bor-

rowed from each historical dataset. The values of wk’s reveal the relative importance of historical datasets. If one
historical dataset is more consistent with the current study compared with the others, the corresponding weight param-
eter should be larger. Furthermore, Mwk can be interpreted as the number of units of information borrowed from
historical dataset Dk. Therefore, the amount of information borrowed from each dataset mainly relies upon the corre-
sponding weight parameter, while the total amount of information borrowed from all historical datasets is controlled
by M.

We propose two approaches to determining the values of the weight parameters. One is a fully Bayesian approach by
imposing a hyper-prior on (w1, … ,wK). As all the values of wk’s are between 0 and 1 satisfying the constraint

∑K
k=1wk = 1,

it is natural to assign a Dirichlet prior to (w1, … ,wK). We take the sample sizes of historical datasets into consideration
by selecting suitable parameters for the Dirichlet distribution. Intuitively, it is preferable to assign a higher weight to
the historical dataset with larger sample size, while we should also prevent a historical dataset with extremely large
sample size from dominating the information borrowing. To strike a balance, we recommend setting the hyper-prior
(w1, … ,wK) ∼ Dirichlet(𝛾1, … , 𝛾K) where 𝛾k = min(1,nk∕n). We refer to the UIP with a Dirichlet prior distribution as
UIP-Dirichlet.

The other approach is to first measure the distances between the current dataset and the historical ones. To determine
the values of weight parameters, a proper measure of the “distance” between two datasets is needed for measuring their
similarity. The Jensen-Shannon (JS) divergence is a commonly used metric for measuring the dissimilarity between two
probability distributions.20,21 An alternative is the Kullback-Leibler (KL) divergence, while we adopt the JS divergence
due to its symmetrical property.

Similar to the discussion in the UIP-Dirichlet method, the weight parameter wk should tend to be small when the
sample size of Dk is small, while wk should not be too large even if the sample size of Dk is extremely large. The JS
divergence automatically penalizes the relatively small sample size (compared with the current dataset) of the historical
dataset. When the sample size of Dk is larger than that of the current dataset, we randomly select n samples from Dk to
calculate the JS divergence and repeat this procedure for a large number of times to obtain the average. More specifically,
the weight parameters are determined as follows.

1. Specify an initial non-informative prior (eg, Jeffreys’ prior) for the parameter 𝜃 under the current dataset D and 𝜃k
under each Dk. Based on the initial prior, we obtain the initial posteriors fini(𝜃|D).

2. For k = 1, … ,K, when nk ≤ n, we obtain the initial posterior fini(𝜃|Dk) and calculate the JS divergence,

dk = JS(D|Dk) =
KL(D|Dk) + KL(Dk|D)

2
,

where KL(D|Dk) represents the KL divergence between two density functions fini(𝜃|D) and fini(𝜃|Dk),

KL(D|Dk) = ∫ fini(𝜃|D) log
{

fini(𝜃|D)
fini(𝜃|Dk)

}
d𝜃.

When nk > n, we randomly draw n samples from Dk for N times to obtain {D(l)
k }N

l=1 and compute the initial posteriors
{fini(𝜃|D(l)

k )}N
l=1, and then calculate the distance dk as the average

∑N
l=1JS(D|D(l)

k )∕N.
3. The weight parameters are defined as
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wk =
1∕dk∑K

s=1(1∕ds)

for k = 1, … ,K. We can also use 1∕
√

dk or other power values for the distance in the above formula.

In an extremely rare case for binary data, D and Dk may be exactly the same which results in the zero JS divergence. As
a remedy, we add a small number, say 10−6, to dk to avoid the division-by-zero problem. We refer to the UIP in conjunction
with the JS divergence as UIP-JS, where the weights are prespecified and the only unknown parameter is M in the UIP-JS.

It is also possible to use other methods (eg, the empirical Bayes method) to predetermine the weight parameters before
sampling. However, in terms of the computation, the JS divergence is easier compared with the empirical Bayes method.
Moreover, the JS divergence measures the dissimilarity between two datasets from an information perspective, which is
consistent with the UIP framework for the prior elicitation.

3 UIP WITH BINARY AND CONTINUOUS DATA

We illustrate the UIP methods in a single-arm trial with continuous and binary data, respectively. We also discuss the
connections among the power prior, commensurate prior, MAP prior, and UIP for continuous data in terms of the condi-
tional prior distribution, as well as extending our UIP to linear models. Moreover, the relationship between the amount
parameter M and the ESS of the informative prior distribution is investigated.

3.1 Continuous data

Suppose that {Y1, … ,Yn} are independent and identically distributed (i.i.d.) from N(𝜃, 𝜎2) and {Yk,1, … ,Yk,nk} are i.i.d.
from N(𝜃k, 𝜎

2
k) for k = 1, … ,K. The parameter of interest is the mean 𝜃 and the unit information for Dk evaluated at the

corresponding MLE 𝜃̂k (which is the sample mean) is

IU(𝜃̂k) =
1
𝜎2

k

,

where 𝜎2
k can be simply replaced by its MLE 𝜎̂

2
k. We impose an inverse-Gamma prior for 𝜎2, for example, 𝜎2 ∼

InvGa(0.01, 0.01). As a result, we obtain the UIP as

𝜃|(M,w1, … ,wK ,D1, … ,DK) ∼ N(𝜇, 𝜂2),

where

𝜇 =
K∑

k=1
wk𝜃̂k,

𝜂2 =

(
M

K∑
k=1

wk

𝜎̂
2
k

)−1

.

Under the normal distribution setting, the MPP, local commensurate prior (LCP), MAP prior, and UIP are closely
related. We extend the MPP to the case with multiple historical datasets as follows,

𝜋MPP(𝜃|𝛼1, … , 𝛼K ,D1, … ,DK) ∝ 𝜋ini(𝜃)
K∏

k=1
L(k)(𝜃|Dk)𝛼k ,

𝛼k ∼ Beta(a, b), k = 1, … ,K,

𝜎2 ∼ InvGa(𝜁, 𝜁),
𝜋ini(𝜃) ∝ 1,
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where 𝛼k is the power parameter for Dk and 𝜋ini is the initial prior.
We also extend the LCP method to the case with K historical datasets. Denoting the commensurate parameter for

dataset Dk by 𝜏k, the LCP is given by

𝜋LCP(𝜃|𝜏1, … , 𝜏K ,D1, … ,DK) ∝ 𝜋ini(𝜃)
K∏

k=1
∫ L(k)(𝜃k|Dk)N

(
𝜃; 𝜃k,

1
𝜏k

)
d𝜃k,

log(𝜏k) ∼ Uniform(𝜉1, 𝜉2), k = 1, … ,K,

𝜎2 ∼ InvGa(𝜁, 𝜁),
𝜋ini(𝜃) ∝ 1.

Denoting the between-trial standard deviation as 𝜏, the MAP prior with multiple historical datasets can be written as

𝜃1, … , 𝜃K , 𝜃|𝜇MAP, 𝜏 ∼ N(𝜇MAP, 𝜏2),
𝜋(𝜇MAP) ∝ 1,

𝜏 ∼ HN(0, 1),

where HN denotes the half-normal distribution on the positive line.
The MPP and LCP, respectively, use the power parameter 𝛼k and the commensurate parameter 𝜏k as the measurement

of consistency or exchangeability between the current dataset and each historical dataset Dk. The MAP prior adopts
the exchangeability assumption and utilizes a single between-trial dispersion parameter 𝜏 to measure the heterogeneity
among the current and historical datasets. In the UIP method, the weight parameters measure the relative consistency of
the historical datasets with respect to the current dataset, while the amount parameter M measures the total number of
units of information borrowed from historical data.

Given the corresponding hyper-parameters (ie, weight and amount parameters for UIP, power parameters for MPP,
the commensurate parameters for LCP, the dispersion parameter 𝜏 for MAP), the specific forms of the MPP, LCP, MAP,
and UIP methods for continuous data are given as follows:

𝜋MPP(𝜃|𝛼1, … , 𝛼K ,D1, … ,DK) ∼ N
⎛⎜⎜⎝

K∑
k=1

𝛼knk∕𝜎̂2
k∑K

s=1𝛼sns∕𝜎̂2
s
𝜃̂k,

( K∑
k=1

𝛼knk
1
𝜎̂

2
k

)−1⎞⎟⎟⎠ ,
𝜋LCP(𝜃|𝜏1, … , 𝜏K ,D1, … ,DK) ∼ N

⎛⎜⎜⎝
K∑

k=1

nk𝜏k∕(𝜏k𝜎̂
2
k + nk)∑K

s=1ns𝜏s∕(𝜏s𝜎̂
2
s + ns)

𝜃̂k,

( K∑
k=1

nk𝜏k𝜎̂
2
k

𝜏k𝜎̂
2
k + nk

1
𝜎̂

2
k

)−1⎞⎟⎟⎠ ,
𝜋MAP(𝜃|D1, … ,DK , 𝜏) ∼ N

( K∑
k=1

nk∕(𝜎̂2
k + nk𝜏)∑K

s=1ns∕(𝜎̂2
s + ns𝜏)

𝜃̂k,
1∑K

k=1nk∕(𝜎̂2
k + nk𝜏)

+ 𝜏2

)
,

𝜋UIP(𝜃|M,w1, … ,wK ,D1, … ,DK) ∼ N
⎛⎜⎜⎝

K∑
k=1

wk𝜃̂k,

( K∑
k=1

wkM 1
𝜎̂

2
k

)−1⎞⎟⎟⎠ .
Conditioning on the hyper-parameters, the MPP, LCP, MAP, and UIP approaches all lead to normal distributions with
different means and variances. Interestingly, the means of all four priors can be written in the form of a weighted sum
of individual sample means. The UIP adopts weight parameters in a much more direct way, while the MPP parameter-
izes weights as an increasing function of the power parameters. The LCP method utilizes commensurate parameters 𝜏k to
measure the commensurability between the current and historical datasets, where a larger value of 𝜏k indicates a higher
level of commensurability, and the weight naturally increases with 𝜏k. The MAP prior utilizes a single dispersion param-
eter 𝜏 to control the information borrowing, and thus the weights mainly rely on the historical variances rather than the
dispersion parameter 𝜏.

The precision (ie, inverse of the variance) of the four priors can be used to quantify the amount of information bor-
rowed from historical datasets. In particular, the precision of the MPP, LCP, and UIP methods can be written as a weighted
sum of the observed Fisher information from each dataset. For the MPP method, the number of units of information for
Dk is determined by the product of the corresponding power parameter 𝛼k and sample size nk. The amount of information
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borrowed from Dk under the LCP approach adopts an increasing function of 𝜏k and nk while that under the UIP frame-
work corresponds to the product of the weight parameter wk and the total amount parameter M, which has the most
transparent form and intuitive interpretation. Under the exchangeability assumption, the MAP prior borrows informa-
tion from multiple historical datasets as a whole, where the amount of information borrowed is a decreasing function of
the dispersion parameter 𝜏.

3.2 Binary data

Suppose that {Y1, … ,Yn} are i.i.d. samples from Bernoulli(𝜃), and the historical data {Yk,1, … ,Yk,nk} are from
Bernoulli(𝜃k) for k = 1, … ,K. The UI under the kth historical dataset Dk evaluated at the MLE 𝜃̂k is

IU(𝜃̂k) =
1

𝜃̂k(1 − 𝜃̂k)
.

As the support of the rate parameter 𝜃 is [0, 1], we assign a Beta prior on 𝜃. Denote the prior mean and prior variance of

UIP as 𝜇 =
∑K

k=1wk𝜃̂k and 𝜂2 =
{

M
∑K

k=1wk∕{𝜃̂k(1 − 𝜃̂k)}
}−1

. Thus, the UIP of 𝜃 can be written as

𝜃|(M,w1, … ,wK ,D1, … ,DK) ∼ Beta(𝛼, 𝛽),

where the two Beta distribution parameters can be easily derived by solving the mean and variance equations in (1),

𝛼 = 𝜇

{
𝜇(1 − 𝜇)

𝜂2 − 1
}

,

𝛽 = (1 − 𝜇)
{

𝜇(1 − 𝜇)
𝜂2 − 1

}
.

3.3 Linear regression

Under a linear regression model, Yi ∼ N(x⊤
i 𝜷, 𝜎

2), where 𝜷 = (𝛽0, … , 𝛽p)⊤ is the regression coefficients and xi =
(1, x1,i, … , xp,i)⊤ is the covariate vector associated with the outcome Yi. For the kth historical dataset, Y (k)

i ∼
N(x(k)⊤

i 𝜷(k), 𝜎2
k), where 𝜷 (k) = (𝛽(k)0 , … , 𝛽

(k)
p )⊤ and x(k)

i = (1, x(k)1,i , … , x(k)p,i )
⊤ for k = 1, … ,K and i = 1, … ,nk.

Under the linear model, we obtain the UI for Dk evaluated at 𝛽(k)l as

IU(𝛽
(k)
l ) = 1

nkVar(𝛽(k)l )
, (2)

where 𝛽
(k)
l is the MLE of 𝛽(k)l and Var(𝛽(k)l ) is the corresponding variance for l = 0, … , p. Thus, the UIPs of the regression

coefficients are given by

𝛽l|(M,w1, … ,wK ,D1, … ,DK) ∼ N
⎛⎜⎜⎝

K∑
k=1

wk𝛽
(k)
l ,

{
M

K∑
k=1

wkIU(𝛽
(k)
l )

}−1⎞⎟⎟⎠ ,
for l = 0, … , p.

Certainly, we can assign the weight parameters and total amount parameter for each coefficient individually, while
this strategy involves too many unknown parameters, leading to difficulties in the implementation of Markov chain Monte
Carlo (MCMC). Hence, our parsimonious strategy is more desirable, that is, we use the same weights and M for all coef-
ficients. If not all regression coefficients in the linear model are shared between the current data and historical data due
to different sets of covariates, we can impose UIPs on those shared coefficients only and leave the unshared ones with
non-informative priors.
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3.4 Prior ESS

For any prior distribution, it is critical to quantify how much information is contained in the distribution in terms of the
ESS.11 In the sequel, we discuss the ESS and its connection with the amount parameter M in the UIP.

Given the weight parameters wk and the amount parameter M, the ESS of the UIP can be easily obtained via the
method of Morital et al.16 For continuous data, the ESS is 𝜎2M

∑K
k=1(wk∕𝜎2

k). In practice, when incorporating the historical
information, it is reasonable to assume 𝜎2 ≈ 𝜎2

1 ≈ … ≈ 𝜎2
K . In such case, the ESS is approximately equal to the amount

parameter M. For binary data, the ESS is

𝛼 + 𝛽 = 𝜇(1 − 𝜇)
𝜂2 − 1 = M

{ K∑
s=1

ws𝜃̂s

}{ K∑
l=1

wl(1 − 𝜃̂l)

}{ K∑
k=1

wk

𝜃̂k(1 − 𝜃̂k)

}
− 1,

which is approximately equal to M − 1 when 𝜃̂1 ≈ … ≈ 𝜃̂K . Therefore, M in the UIP represents the total number of units
in the informative prior.

It is also possible to obtain the ESS under the full Bayesian manner following Morita et al.17 By integrating out the
parameters (w1, … ,wK ,M), the marginal informative prior is

𝜋(𝜃|D1, … ,DK) = ∫ 𝜋(𝜃|w1, … ,wK ,D1, … ,DK ,M)𝜋(w1, … ,wK ,M) dw1 … dwK dM.

We then define the 𝜖-information conditional prior 𝜋𝜖(𝜃|w1, … ,wK ,M) such that it has the same mean but very large
variance compared with the conditional informative prior. Suppose the dataset D

(m)
contains m samples and all samples

are 𝜃 where 𝜃 is the mean of the distribution 𝜋(𝜃|D1, … ,DK). This leads to the expected posterior as

𝜋𝜖(𝜃|D(m)
) ∝ L(𝜃|D(m)

)∫ 𝜋𝜖(𝜃|w1, … ,wK ,M)𝜋(w1, … ,wK ,M) dw1 … dwK dM.

The ESS is defined as the value of m by minimizing |𝜎−2
𝜋 − 𝜎−2

𝜖 (D
(m)

)|, where 𝜎2
𝜋 and 𝜎2

𝜖 (D
(m)

) are the variances under
𝜋(𝜃|D1, … ,DK) and 𝜋𝜖(𝜃|D(m)

), respectively.

4 SIMULATION STUDIES

We conduct extensive simulations to assess the characteristics of the UIP with continuous data, and the results
for binary data are presented in the Supplementary Material. First, we introduce the notation 𝜃0 as the true parame-
ter value for the current data, while 𝜃 is the generic notation of the parameter of interest. We evaluate the ESS and
the adaptive borrowing property of the UIP. We also compare the UIP with Jeffreys’ prior, full-borrowing strategy, MPP,
LCP, and rMAP priors under the single-arm trial in terms of the mean squared error (MSE) as well as hypothesis testing
H0 ∶ 𝜃 = 𝜃0 vs H1 ∶ 𝜃 ≠ 𝜃0. The full-borrowing strategy refers to the analysis by directly pooling the current and historical
datasets together and applying Jeffreys’ prior for the pooled dataset. For the MPP and LCP methods, we adopt flat initial
priors, that is, 𝜋ini(𝜃) ∝ 1. We assign a non-informative prior, Beta(1, 1), to the power parameter 𝛼k of the MPP method,
while a vague prior, Uniform(−30, 30), is imposed on the logarithm of the commensurate parameter log(𝜏k) for the LCP
method. Following Neuenschwander et al,11 the rMAP prior adopts the half-normal distribution with scale parameter 1
for the dispersion parameter 𝜏 and assigns weight 0.1 to the non-informative component.

4.1 Effective sample size

We justify the relationship between the amount parameter M and ESS in the prior distribution. For continuous data, we
adopt three historical datasets of sample sizes 80,100, 120 with the sample size of the current dataset 100. The amount
parameter M varies from 50 to 150. The true values of mean 𝜃0 and standard deviation 𝜎 of the current dataset are
fixed at 0 and 1, while the means (𝜃1, 𝜃2, 𝜃2) and standard deviations (𝜎1, 𝜎2, 𝜎3) of the historical datasets are randomly



JIN and YIN 9

F I G U R E 1 Effective sample size (ESS) of the conditional UIP and that of the marginal UIP for continuous data when varying M from
50 to 150 [Colour figure can be viewed at wileyonlinelibrary.com]

generated from ranges [−0.5, 0.5] and [0.9, 1.1], respectively. To obtain robust results, we repeat the experiment for
100 times.

The ESS of the conditional prior distribution16 and that of the marginal prior distribution17 under 100 repetitions are
presented in Figure 1, where the weights for the conditional UIP are calculated via the JS method. For continuous data,
the ESS contained in the conditional UIP is close to the amount parameter M. As the hyper-prior on weight parameters
introduces more uncertainty, the ESS in the marginal UIP decreases compared with that in the conditional UIP given
the same M as desired. However, the ESS of the marginal UIP still shows the same tendency with the amount parameter
M, that is, it increases as M increases. The results for binary data show similar trends as shown in Web Figure 1 of the
Supplementary Material.

4.2 Adaptive borrowing property

We demonstrate that under the UIP, the values of the total amount parameter M, the weight parameters wk’s, and the
Mwk’s can adapt to the level of consistency between the historical datasets and current dataset. If the historical datasets
are close to the current, the UIP borrows more information from historical datasets, that is, the value of M would be large.
When a certain dataset Dk is more consistent with D relative to other datasets, more weight would be assigned to Dk.

To examine the trend of the total amount parameter M, we consider two historical datasets D1 and D2 generated
from N(−0.3, 1) and N(0.3, 1), respectively, with the same sample size n1 = n2 = 40. We vary 𝜃0, the true value of the
mean for the current dataset D also with sample size n = 40, from 0.3 to 1.6 and fix the standard deviation at 𝜎 = 1. The
hyper-prior for M is set as M ∼ Uniform(0, 40). We draw the posterior samples of the total amount parameter M under
both UIP-Dirichlet and UIP-JS and take the posterior mean of M as the estimate. We replicate the experiment for 100
times, and the averages of posterior means of M under both priors are shown in the left column of Figure 2. When the
level of consistency (or exchangeability) between the population mean of D and those of historical datasets decreases,
the value of M decreases, indicating that less information is borrowed from historical datasets. It is worth noting that
when inconsistency becomes extremely severe, the amount parameter M may drop close to 0, which indicates that there

http://wileyonlinelibrary.com
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F I G U R E 2 The trend of M (left panels) when the population mean of the current dataset 𝜃0 varies from 0.3 to 1.6, and the trends of w1

and w2 (middle panels) and those of Mw1 and Mw2 (right panels) when 𝜃0 varies from −0.3 to 0.3 under the UIP-Dirichlet (top) and UIP-JS
(bottom) methods for continuous data with 100 repetitions [Colour figure can be viewed at wileyonlinelibrary.com]

is almost no information borrowed from the historical data. The experiments for the amount parameter M show that
the UIP incorporates the historical information adaptively according to the overall consistency between the current and
historical datasets.

We further utilize two historical datasets to investigate the trends of weight parameter wk and Mwk for the
UIP-Dirichlet and UIP-JS methods. The historical data D1 and D2 are drawn from N(−0.3, 1) and N(0.3, 1), respectively,
with sample sizes n1 = n2 = 40 while the population mean of D with n = 40 varies from −0.3 to 0.3 with a fixed standard
deviation 𝜎 = 1. The hyper-prior for M is set as M ∼ Uniform(0, 40). We replicate the experiment for 100 times to draw
the plots of the averages of estimates of weight parameters wk’s and Mwk’s. The right column of Figure 2 demonstrates
that when the population mean of the current dataset 𝜃0 is closer to that of D1, Mw1 is larger, indicating more information
is borrowed from D1 compared with D2; and a similar trend is observed for Mw2. The tendency of the weight parameters
wk is similar to that of Mwk. It is reasonable because the overall level of consistency between the current and historical
datasets remains approximately the same when varying 𝜃0 between 𝜃1 and 𝜃2. It is also worth noting that the distinc-
tion of weight parameters under the UIP-JS method is larger than that under the UIP-Dirichlet method. For example,
when 𝜃0 = 0.3, the UIP-JS method assigns a weight of almost 0.8 to the historical dataset D1 (whose population mean
is also 0.3), while the weight parameter of D1 under the UIP-Dirichlet method is around 0.6, which is less extreme than
UIP-JS.

The results for binary data are presented in Web Figure 2 of the Supplementary Material, where similar phenomena
can be observed.

http://wileyonlinelibrary.com
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F I G U R E 3 The absolute bias, variance, and mean squared error (MSE) when varying 𝜃0 from 0 to 1 under Jeffreys’ prior (JEF),
UIP-Dirichlet (UIP-D), UIP-JS, MPP, LCP, rMAP, and full-borrowing (FULL) methods with sample size n = 60 (top) and n = 120 (bottom) for
continuous data [Colour figure can be viewed at wileyonlinelibrary.com]

4.3 Single-arm trial scenario

We further compare our UIPs with Jeffreys’ prior, the full-borrowing method, MPP, LCP, and rMAP priors for continuous
data. We consider two historical datasets with sample sizes n1 = 100 and n2 = 50: D1 from N(0.5, 1) and D2 from N(1, 1).
The variance for the current dataset D is also fixed as 1.

To assess the performance of different methods, we show the absolute biases, variances, and MSEs in Figure 3 when
varying the mean parameter of the current dataset 𝜃0 from 0 to 1.0 for n = 60 and 120, respectively. The bias of 𝜃, defined
as E {(𝜃 − 𝜃0)|D}, measures the accuracy for the posterior mean of 𝜃. The variance, denoted by Var(𝜃|D), measures the
precision of the posterior distribution. The MSE compromises both the accuracy and precision of the posterior distribu-
tion, which is defined as E

{
(𝜃 − 𝜃0)2|D}

. We omit the MSE curve for the full-borrowing method in order to display other
MSE curves better. We replicate 1000 experiments and take the average for each metric.

All five informative priors show better performances when the historical datasets are more consistent with the current
dataset. Among them, the rMAP prior yields the most robust results in terms of all three metrics. However, when the
mean parameter of the current dataset is close to the counterparts of the historical datasets, the variance of rMAP is only
slightly smaller than that under Jeffreys’ prior. It illustrates that the rMAP prior tends to be too conservative to borrow
enough information in some cases. The other four informative priors have a similar trend for 𝜃0 ≤ 0.5, that is, they all
borrow information more aggressively when the historical datasets are coherent with the current one, yet sacrifice the
robustness. When 𝜃0 ∈ [0.5, 1], the UIP-JS method has the relatively better performance as it yields comparable absolute
bias and relatively lower variance among the UIP-Dirichlet, UIP-JS, MPP, and LCP methods. In terms of MSE, when
sample size is small (n = 60), all five informative priors perform better than Jeffreys’ prior for 𝜃0 > 0.4. However, if we
increase the sample size to n = 120, as more information is available for Jeffreys’ prior, it shows lower MSE than the

http://wileyonlinelibrary.com
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F I G U R E 4 The size, power, and calibrated power of hypothesis testing when varying the true mean 𝜃0 from 0 to 1 for continuous data
with sample size n = 60 (top) and n = 120 (bottom) under Jeffreys’ prior (JEF), UIP-Dirichlet (UIP-D), UIP-JS, MPP, LCP, rMAP, and
full-borrowing (FULL) methods; left panels: the test size under H0 ∶ 𝜃 = 𝜃0; middle panels: power under H0 ∶ 𝜃 = 0.; right panels: the
calibrated power under H0 ∶ 𝜃 = 0 when controlling the test size at 0.05 [Colour figure can be viewed at wileyonlinelibrary.com]

UIP-Dirichlet, MPP, and LCP methods around 𝜃0 = 1. It is also worth noting that the UIP-JS method enjoys consistently
lower MSE compared with Jeffreys’ prior and rMAP under both sample sizes for 𝜃0 > 0.4.

We further conduct hypothesis testing for H0 ∶ 𝜃 = 𝜃0 vs H1 ∶ 𝜃 ≠ 𝜃0 using the 95% equal-tailed credible interval (CI),
that is, if the CI does not contain 𝜃0, we reject H0. In the left column of Figure 4, we present the sizes when varying the
mean parameter for the current dataset from 0 to 1.0 under n = 60,120 with 1000 repetitions. In terms of the type I error,
all five informative priors are robust compared with the full-borrowing method. The MPP method has the largest type I
error among the five informative priors for 𝜃0 ≤ 0.5. For 𝜃0 ∈ [0.5, 1], the UIP-JS shows higher type I error while the other
informative priors perform similarly to Jeffreys’ prior. The results of the rMAP prior are most close to those of Jeffreys’
prior for all values of the 𝜃0’s. We show the power in the middle column of Figure 4 under the hypothesis test H0 ∶ 𝜃 = 0
when varying the true mean 𝜃0 from 0 to 1.0. The rMAP prior has the lowest power among the five informative priors,
as it is conservative in borrowing information from historical datasets. While yielding the largest type I error, the MPP
method also has largest power for 𝜃0 ∈ [0, 0.5]. For 𝜃0 ∈ [0.5, 1], all the methods yield power close to 1.

To make a fair comparison in power, we recalibrate the test size of H0 ∶ 𝜃 = 0 for all seven methods to be 0.05 (ie, adjust
the coverage probability of CI for the hypothesis test) and present the power curves under H0 ∶ 𝜃 = 0 in the right column
of Figure 4. For continuous data, it is impossible to control the size at 0.05 for the full-borrowing method, which is thus
omitted. After calibration, there are significant gaps between the informative priors and Jeffreys’ prior, revealing that all
the informative priors gain information from historical datasets. The rMAP prior has the lowest calibrated power, which
is consistent with the observation that it is conservative in borrowing information. In terms of the calibrated power, the
UIP methods are consistently better than rMAP. Under the small sample size (n = 60), the UIP-JS method has the largest
calibrated power, while the MPP and UIP-Dirichlet methods lead to the best performance for n = 120.

http://wileyonlinelibrary.com
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The test sizes under the MPP, LCP, and UIP methods are significantly inflated compared with that under
Jeffreys’ prior. In fact, size inflation is common for informative priors and a similar phenomenon is observed in
the simulations by other works.9,10,14 When incorporating information from historical data to increase the power,
it also tends to inflate the test size. To solve this issue, we can calibrate the size by enlarging the coverage prob-
ability of the credible interval. In real data application, the calibration can be implemented by resampling meth-
ods, for example, bootstrap or permutation, to reconstruct the null distribution. In the simulation studies, all the
MPP, LCP, and UIP methods yield significantly higher power even after calibration of the size compared with Jef-
freys’ prior, which demonstrates that these informative priors can effectively borrow information from the historical
data. Moreover, not only are informative priors used for frequenstist hypothesis testing, but they can also help to
estimate the parameter of interest. Figure 3 shows that when the historical datasets do not deviate dramatically
from the current dataset, informative priors can improve the parameter estimates by reducing MSE compared with
Jeffreys’ prior.

5 APPLICATION

As an illustration, we apply the UIP-Dirichlet and UIP-JS methods to six phase III clinical trials to investigate the
efficacy of memantine in Alzheimer’s disease (AD).22,23 All the six trials were double-blind and placebo-controlled.
Among the six trials, only the trial MRZ-960524 had a treatment period of 28 weeks, while others had a duration of 24
weeks. Trials MEM-MD-0225 and MEM-MD-1226 took memantine as an add-on therapy in patients who already received
acetylcholinesterase inhibitors (AChEIs) and other trials assessed memantine as a monotherapy. Trials MRZ-9605,
MEM-MD-01,27 and MEM-MD-02 recruited patients with moderately severe to severe AD, while trials LU-99679,28

MEM-MD-10,29 and MEM-MD-12 enrolled patients with mild to moderate AD. The severity of AD was defined by scores
of the mini-mental state exam (MMSE).

In our analysis, we regard the trial MEM-MD-12 as the current study and the remaining trials as historical studies.
The efficacy of the behavioral domain could be measured at the end of the trial by the change of the neuropsychi-
atric inventory (NPI) score from the baseline, and a decrease in the NPI score indicated clinical improvement.30 Among
the six historical trials, the results of LU-99679 and MEM-MD-12 appeared to be similar in comparison with other
trials. For trials LU-99679 and MEM-MD-12, the changes in the NPI scores indicated that the efficacy of meman-
tine was inferior to the placebo in the behavioral domain, while the rest of the trials demonstrated the opposite
results.

To analyze the changes in the NPI scores in the control and treatment groups, it is natural to fit a linear model by
regressing the change in the NPI scores Yi on the group indicator Xi. However, based on previous studies,31,32 the NPI
scores do not conform to a Gaussian distribution, while the normality of the change in the NPI scores cannot be assessed
as we only have summary statistics of the datasets. To be conservative, instead of modeling the patient-level data, we
choose to model the sample mean of each group. As the sample size of each of the six studies is large, the normality of
the sample mean is guaranteed by the central limit theorem.

Specifically, let Yi be the change in the NPI score for patient i, Xi be an indicator variable taking a value of 1 if patient
i received memantine, and 0 otherwise, Y T and Y C be the sample means of Yi’s for the treatment and control groups,
respectively and (nT ,nC) are the corresponding sample sizes. We assume

E[Yi] = 𝛽0 + 𝛽1Xi, Var(Yi) = 𝜎2,

Y T ∼ N(𝛽0 + 𝛽1, 𝜎
2∕nT), Y C ∼ N(𝛽0, 𝜎

2∕nC).

Our goal is to determine whether memantine is superior to placebo in the behavioral domain, that is, whether 𝛽1 is
significantly smaller than 0. The parameter 𝜎2 is the nuisance parameter, which is replaced by the sample variance in all
the analyses. We first analyze the data of the six trials separately by classical Bayesian linear models with non-informative
priors for 𝛽0 and 𝛽1, that is, 𝛽0 ∼ N(0, 102) and 𝛽1 ∼ N(0, 102).

The results in Table 1 show that among all the six studies, MEM-MD-02 is the only trial with a statistically signif-
icant result as its upper bound of the 95% equal-tailed CI for 𝛽1 is below 0. The estimates of 𝛽1 in trials LU-99679 and
MEM-MD-12 are positive and close to each other, and thus we expect that more information would be borrowed from
LU-99679 compared with other historical datasets.
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T A B L E 1 Posterior mean estimates and 95% credible intervals (CIs) under non-informative priors for each of the six trials with the
sample size of each trial and the corresponding weight assigned to each dataset using UIP-Dirichlet and UIP-JS

𝜷0 𝜷1 UIP-Dirichlet UIP-JS

Trials Sample size Estimate 95% CI Estimate 95% CI Weight Weight

MEM-MD-12 261 0.881 (−1.055, 2.798) 0.069 (−2.579, 2.663) 1 1

LU-99679 210 −2.146 (−4.593, 0.275) 1.772 (−1.149, 4.712) 0.237 0.357

MEM-MD-01 260 0.423 (−2.072, 2.923) −2.473 (−5.966, 0.958) 0.217 0.159

MEM-MD-02 323 2.698 (0.720, 4.644) −3.412 (−6.086, −0.748) 0.201 0.073

MEM-MD-10 225 2.739 (0.228, 5.288) −1.924 (−5.485, 1.697) 0.196 0.256

MRZ-9605 181 2.741 (−0.568, 6.131) −2.565 (−7.128, 1.915) 0.148 0.155

T A B L E 2 Posterior mean estimates and 95% credible intervals (CIs) using the UIP-Dirichlet, UIP-JS, MPP, LCP, and rMAP
methods for the current study MEM-MD-12 by borrowing information from five historical trials LU-99679, MEM-MD-01,
MEM-MD-02, MEM-MD-10, and MRZ-9605

Parameters UIP-Dirichlet UIP-JS MPP LCP rMAP

𝛽0 Estimate 1.237 1.129 0.857 1.187 1.163

95% CI (−0.559, 3.008) (−0.587, 2.805) (−1.059, 2.800) (−0.490, 2.886) (−0.690, 2.943)

𝛽1 Estimate −0.623 −0.406 −0.828 −0.511 −0.482

95% CI (−2.774, 1.643) (−2.311, 1.663) (−3.084, 1.421) (−2.691, 1.472) (−2.631, 2.054)

We apply the UIP-Dirichlet and UIP-JS methods to analyze the data from MEM-MD-12 by incorporating the
five historical datasets in the prior, in comparison with MPP, LCP, and rMAP. As our main interest focuses on
the parameter 𝛽1, we only impose an informative prior on 𝛽1 while we adopt non-informative priors for the other
parameters. To prevent the historical data from overwhelming the current one, we set M ∼ Uniform(0,n) as the
hyper-prior for the total amount parameter M for the UIP methods, where n is the sample size of the current trial
MEM-MD-12.

As shown in Table 2, all the five informative priors demonstrate the ability of adaptively borrowing information for
𝛽1 from historical data, because the 95% CIs of 𝛽1 are narrower than those without any prior information in Table 1.
The UIP-Dirichlet, UIP-JS, and LCP methods yield similar results in terms of 𝛽0 and 𝛽1. Among the five informative
priors, the 95% CI using the rMAP prior is the widest, as the rMAP prior is more conservative in borrowing information.
Furthermore, even when we leverage the same non-informative prior for 𝛽0, the 95% CIs of 𝛽0 under UIP, LCP, and rMAP
are narrower than those in Table 1, while for MPP, the estimate and 95% CI of 𝛽0 are essentially unchanged compared
with the original results for MEM-MD-12 in Table 1.

For the total amount parameter M, the UIP-Dirichlet and UIP-JS methods lead to comparable results, M =
137 vs 146, indicating intermediate borrowing of the historical data compared with the sample size of the
current data 261. Nonetheless, the weight parameters of the two methods are slightly different. The weight
parameters under the UIP-Dirichlet method are (0.239, 0.217, 0.201, 0.196, 0.148) for the five trials LU-99679,
MEM-MD-01, MEM-MD-02, MEM-MD-10, and MRZ-9605, respectively, while those under the UIP-JS method are
(0.357, 0.159, 0.073, 0.256, 0.155). As expected, both methods assign notably larger weights to the trial LU-99679 com-
pared with other historical datasets, while the distinction of the weight parameters under UIP-JS is larger than that under
UIP-Dirichlet.

In summary, under all the five informative priors, although the CIs of 𝛽1 become narrower, they still cover 0. Thus, in
terms of the NPI score, the efficacy of memantine in the behavioral domain is not shown to be superior to that of placebo,
which is consistent with the original conclusion in Porsteinsson et al.26

The statistics of the NPI scores for both the memantine and placebo groups of the six trials are pre-
sented in Web Table 1 of the Supplementary Material, which also contains more information on the numerical
studies.
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6 DISCUSSION

We propose an adaptively informative prior using historical data, which is elicited from an information per-
spective. We demonstrate that the UIP framework has many similarities to other commonly used adaptive pri-
ors and yields comparable performances. The proposed UIP methods are easy to implement for multiple histor-
ical datasets, whose parameters have intuitive interpretations. The weight parameters wk can be interpreted as
the relative importance of the historical datasets through competition against each other. The amount param-
eter M reveals the total units of information contained in the prior. For both binary and continuous data,
we show that the amount parameter M typically has a comparable value with the prior ESS defined by
Morita et al.16

The UIP method would be useful in the clinical trial field, as it is not uncommon to find multiple related trials for
any ongoing study, especially, for the control arm (eg, the standard of care). While we mainly illustrate the UIP under
the single-arm trial case, it is also extended to the linear model settings. In practice, it is typically not easy to obtain the
patient-level historical data. An important feature of the UIP framework is that it does not need the patient-level historical
data while some informative priors (eg, MPP and LCP methods) need such data. For example, in a study involving a linear
regression model with multiple covariates, to adopt the UIP-Dirichlet method for the parameter of interest we only need
the estimate of that parameter and its corresponding confidence interval which are commonly reported in publications of
the historical study. However, as the MPP and LCP are derived from the likelihood, the complete patient-level historical
data are required.
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